Skip to main content

Discovering lactic acid bacteria by genomics

  • Chapter

Abstract

This review summarizes a collection of lactic acid bacteria that are now undergoing genomic sequencing and analysis. Summaries are presented on twenty different species, with each overview discussing the organisms fundamental and practical significance, environmental habitat, and its role in fermentation, bioprocessing, or probiotics. For those projects where genome sequence data were available by March 2002, summaries include a listing of key statistics and interesting genomic features. These efforts will revolutionize our molecular view of Gram-positive bacteria, as up to 15 genomes from the low GC content lactic acid bacteria are expected to be available in the public domain by the end of 2003. Our collective view of the lactic acid bacteria will be fundamentally changed as we rediscover the relationships and capabilities of these organisms through genomics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahrne S, Nobaek S, Jeppsson B, Adlerberth I, Wold AE and Mohn G (1998) The normal Lactobacillus flora of healthy human rectal and oral mucosa. J. Appl. Microbiol. 85: 88–94.

    Google Scholar 

  • Almirón-Roig E, Mulholland F, Gasson MJ and Griffin AM (2000) The complete cps gene cluster from Streptococcus thermophilus NCFB 2393 involved in the biosynthesis of a new exopolysaccharide. Microbiology. 146: 2793–2802.

    PubMed  Google Scholar 

  • Alsop RM (1983) Industrial production of dextrans. In: Bushell ME (Ed) Progress in Industrial Microbiology (pp 1–42 ). Elsevier, New York.

    Google Scholar 

  • Altermann E, Klein JR and Henrich B (1999) Primary structure and features of the genome of the Lactobacillus gasseri temperate bacteriophage (phi) adh. Gene 236: 333–346.

    Google Scholar 

  • Alvarez S, Herrero C, Bru E and Perdigon G (2001) Effect of Lactobacillus casei and yogurt administration on prevention of Pseudomonas aeruginosa infection in young mice. J. Food Prot. 64: 1768–1774.

    Google Scholar 

  • Amador E, Castro JM, Correia A and Martin JF (1999) Structure and organization of the rrnD operon of Brevibacterium lactofermentum: analysis of the 16S rRNA gene. Microbiology 145: 915–924.

    PubMed  CAS  Google Scholar 

  • Arrach N, Fernandez-Martin R, Cerda-Olmedo E and Avalo J (2001) A single gene for lycopene cyclase, phytoene synthase, and regulation of carotene biosynthesis in Phvcomyces. Proc. Natl. Acad. Sci. 98: 1687–1692.

    Google Scholar 

  • Axelsson L (1998) Lactic acid bacteria: classification and physiology. In: Salminen S and Von Wright A (Eds) Lactic Acid Bacteria: Microbiology and Functional Aspects, 2nd edition (pp 1–72 ). Marcel Dekker, New York.

    Google Scholar 

  • Baccigalupi L, Naclerio G, de Felice M and Ricca E (2000) Efficient insertional mutagenesis in Streptococcus thermophilus. Gene 258: 9–14.

    PubMed  CAS  Google Scholar 

  • Barefoot SF and Klaenhammer TR (1983) Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Appl. Environ. Microbiol. 45: 1808–1815.

    Google Scholar 

  • Beelman RB, Gavin A III and Keen RM (1977) A new strain of Leuconostoc oenos for induced malo-lactic fermentation in eastern wines. Am. J. Enol. Vitic. 28: 159–165.

    Google Scholar 

  • Beelman RB, McArdle FJ and Duke GR (1980) Comparison of Leuconostoc oenos strains ML-34 and PSU-1 to induce malolactic fermentation in Pennsylvania red table wines. Am. J. Enol. Viticult. 31: 269–276.

    Google Scholar 

  • Beimfohr C, Ludwig W and Schleifer K-H (1997) Mosaic structure of large regions of the Lactococcus lactis subsp. cremoris chromosome. System. Appl. Microbiol. 20: 216–221.

    Google Scholar 

  • Beresford TP, Fitzsimons NA, Brennan NL and Cogan TM (2001) Recent advances in cheese microbiology. Int. Dairy J. 11: 259274.

    Google Scholar 

  • Bernet M-F, Brassart D, Neeser J-R and Servin AL (1994) Lactobacillus acidophilus Lal binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut 35: 483–489.

    Google Scholar 

  • Bernet-Camard M-F, Liévin V, Brassart D, Neeser J-R, Servin AL and Hudault S (1997) The human Lactobacillus acidophilus strain Lal secretes a non bacteriocin antibacterial substance active in vitro and in vivo. Appl. Environ. Microbiol. 63: 2747–2753.

    Google Scholar 

  • Bhowmik T and Steele JL (1993) Development of an electroporation procedure for gene disruption in Lactobacillus helveticus CNRZ32. J. Gen. Microbiol. 139: 1433–1439.

    CAS  Google Scholar 

  • Bhowmik T, Fernandez L and Steele JL (1993) Gene replacement in Lactobacillus helveticus CNRZ 32. J. Bacteriol. 175: 63416344.

    Google Scholar 

  • Biavati B and Mattarelli P (2001) The family Bifidobacteriaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH and Stackebrandt E (Eds) The Prokaryotes (pp 1–70). Springer, New York.

    Google Scholar 

  • Black F, Einarsson K, Lidbeck A, Orrhage K and Nord CE (1991) Effect of lactic acid producing bacteria on the human intestinal microflora during ampicillin treatment. Scand. J. Infect. Dis. 23: 247–254.

    Google Scholar 

  • Bolotin A, Mauger S, Malarme K, Ehrlich SD and Sorokin A (1999) Low-redundancy sequencing of the entire Lactococcus lactis IL1403 genome. Antonie van Leeuwenhoek 76: 27–76.

    Google Scholar 

  • Bolotin A, Wincker P, Manger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD and Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 11: 731–753.

    PubMed  CAS  Google Scholar 

  • Bolotin A, Ehrlich SD and Sorokin A (2002) Studies of genomes of dairy bacteria Lactococcus lactis. Sci. Aliments (in press)

    Google Scholar 

  • Boyaval P, Boyaval E and Desmazeaud MJ (1985) Survival of Brevi-bacterium linens during nutrient starvation and intracellular changes. Arch. Microbiol. 141: 128–132.

    Google Scholar 

  • ten Brink B, Damink C, Joosten HMLJ and Huis inlet Veld JHJ (1990) Ocurrence and formation of biologically active amines in foods. Int. J. Food Microbiol. 11: 73–84.

    Google Scholar 

  • Broadbent JR (2001) Genetics of lactic acid bacteria. In: Steele JL and Marth EH (Eds) Applied Dairy Microbiology, 2nd ed. Marcel Dekker, New York.

    Google Scholar 

  • Broker BE (1977) Ultrastructural surface changes associated with dextran synthesis by Leuconostoc mesenteroides. J. Bacteriol. 131: 288–92.

    Google Scholar 

  • Burrus V, Bontemps C, Decaris B and Guédon G (2001) Characterization of a novel type II restriction-modification system, Sth3681, encoded by the integrative element ICEStl of Streptococcus thermophilus CNRZ368. Appl. Environ. Microbiol. 67: 1522–1528.

    Google Scholar 

  • Caldwell S, McMahon DJ, Oberg CJ and Broadbent JR (1996) Development and characterization of lactose-positive Pediococcus

    Google Scholar 

  • species for milk fermentation. Appl. Environ. Microbiol. 62: 936–941.

    Google Scholar 

  • Caldwell S, Hutkins RW, McMahon DJ, Oberg CJ and Broadbent JR (1998) Lactose and galactose uptake by genetically engineered Pediococcus species. Appl. Microbiol. Biotechnol. 49: 315–320.

    Google Scholar 

  • Champomier-Verges M-C, Chaillou S, Cornet M and Zagorec M (2002) Lactobacillis sakei: recent developments and future prospects. Res. Microbiol. 153: 115–123.

    Google Scholar 

  • Chen H, Lim CK, Lee YK and Chan YN (2000) Comparative analysis of the genes encoding 23S–5S rRNA intergenic spacer regions of Lactobacillus casei-related strains. Int. J. Syst. Evol. Microbiol. 50: 471–478.

    Google Scholar 

  • Chevallier B, Hubert JC and Kammerer B (1994) Determination of chromosome size and number of rrn loci in Lactobacillus plantarum by pulsed-field gel electrophoresis. FEMS Microbiol. Lett. 120: 51–56.

    Google Scholar 

  • Cho JS, Choi Yi and Chung DK (2000) Expression of Clostridium thermocellum endoglucanase gene in Lactobacillus gasseri and Lactobacillus johnsonii and characterization of the genetically modified probiotic lactobacilli. Curr. Microbiol 40: 257–63.

    Google Scholar 

  • Christensen JE, Dudley EG, Pederson JR and Steele JL (1999) Peptidases and amino acid catabolism in lactic acid bacteria. Antonie van Leeuwenhoek 76: 217–246.

    PubMed  CAS  Google Scholar 

  • Clark RH, Russell WM and Klaenhammer TR (2000) Distribution of Lactobacillus acidophilus among a variety of cultured foods and probiotics. Abstracts, Annual IFT Meeting of the Institute of Food Technologists, Dallas, TX, 10 June, 2000

    Google Scholar 

  • Coderre PE and Somkuti GA (1999) Cloning and expression of the pediocin operon in Streptococcus thermophilus and other lactic fermentation bacteria. Curr. Microbiol. 39: 295–301.

    PubMed  CAS  Google Scholar 

  • Cogan TM (1987) Co-metabolism of citrate and glucose by Leuconostoc spp.: effects on growth, substrates and products. J. Appl. Bacteriol. 63: 551–58.

    CAS  Google Scholar 

  • Cogan TM, O’Dowd M and Mellerick D (1981) Effects of sugar on acetoin production from citrate by Leuconostoc lactis. Appl. Environ. Microbiol. 41: 1–8.

    Google Scholar 

  • Collins MD, Phyllips BA and Zanoni P (1989) Deoxyribonucleic acid homology studies of Lactobacillus casei, Lactobacillus paracasei sp. nov., subsp. paracasei and subsp. tolerans, and Lactobacillus rhamnosus sp. nov., comb. nov. Int. J. Syst. Bacteriol. 39: 105–108.

    Google Scholar 

  • Conway PL, Gorbach SL and Goldin BR (1987) Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J. Dairy Sci. 70: 1–12.

    PubMed  CAS  Google Scholar 

  • Coton E, Rollan GC and Lonvaud-Funel A (1998) Histidine carboxylase of Leuconostoc oenos 9204: Purification, kinetic properties, cloning and nucleotide sequence of the hdc gene. J. Appl. Microbiol. 84: 143–151.

    Google Scholar 

  • Daeschel MA and Klaenhammer TR (1985) Association of a 13.6megadalton plasmid in Pediococcus pentosaceus with bacteriocin activity. Appl. Environ. Microbiol. 50: 1528–1541.

    Google Scholar 

  • Dambekodi PC and Gilliland SE (1998) Incorporation of cholesterol into the cellular membrane of Bifidobacterium longuns. J. Dairy Sci. 81: 1818–1824.

    PubMed  CAS  Google Scholar 

  • Daniel P (1995) Sizing the Lactobacillus plantarum genome and other lactic bacteria species by transverse alternating field electrophoresis. Curr. Microbiol. 30: 243–246.

    CAS  Google Scholar 

  • Daveran-Mingot ML, Campo N, Ritzenthaler P and Le Bourgeois P (1998) A natural large chromosomal inversion of Lactococcus lactis is mediated by homologous recombination between two insertion sequences. J. Bacteriol. 180: 4834.

    PubMed  CAS  Google Scholar 

  • Davidson B, Kordis N, Dobos M and Hillier A (1996) Genomic organization of lactic acid bacteria. Antonie van Leeuwenhoek 70: 161–183.

    PubMed  CAS  Google Scholar 

  • Delcher AL, Harmon D, Kasif S, White O and Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nuclaic. Acids Res. 27: 4636–4641.

    Google Scholar 

  • Delcour J, Ferain T and Hols P (2000) Advances in the genetics of thermophilic lactic acid bacteria. Curr. Opin. Biotechnol. 11: 497–504.

    Google Scholar 

  • Dellaglio F, Dicks LMT, du Toit M and Ton-iani S (1991) Designation of ATCC334 in place of ATCC393 (NCDO 161) as the neotype strain of Lactobacillus casei subsp. casei and rejection of the name Lactobacillus paracasei. Int. J. Syst. Bacteriol. 41: 340–342.

    Google Scholar 

  • Dellaglio F, Dicks LMT and Torriani S (1995) The genus Leuconostoc. In: Wood BJB and Holzapfel WH (Eds) The Genera of Lactic Acid Bacteria, vol. 2, (pp 235–278). Blackie Academic and Professional, London

    Google Scholar 

  • Delorme C, Godon J-J, Ehrlich SD and Renault P (1994) Mosaic structure of large regions of the Lactococcus lactis subsp. cremoris chromosome. Microbiology. 140: 3053–3060.

    PubMed  CAS  Google Scholar 

  • Demoss RD, Bard RC and Gunsalus IC 1951. The mechanism of heterolactic fermentation: a new route of ethanol formation. J. Bacteriol. 62: 499–5H.

    PubMed  CAS  Google Scholar 

  • Dias B and Weimer B (1998a) Conversion of methionine to thiols by lactococci, lactobacilli, and brevibacteria. Appl. Environ. Microbiol. 64: 3320–3326.

    PubMed  CAS  Google Scholar 

  • Dias B and Weimer B (1998b) Purification and characterization of methionine ß-lyase from Brevibacterium linens BL2. Appl. Environ. Microbiol. 64: 3327–3331.

    PubMed  CAS  Google Scholar 

  • Dicks LMT, du Plessis EM, Dellaglio F and Lauer E (1996) Reclassification of Lactobacillus casei subsp. casei ATCC 393 and Lactobacillus rhamnosus ATCC15820 as Lactobacillus zeae nom. rev., designation of ATCC 334 as the neotype of L. casei subsp. casei, and rejection of the name Lactobacillus paracasei. Int. J. Syst. Bacteriol. 46: 337–340.

    Google Scholar 

  • Djordjevic GM, Tchieu and Saier MH (2001) Genes involved in control of galactose uptake in Lactobacillus brevis and reconstitution of the regulatory system in Bacillus subtilis. J. Bacteriol. 183: 3224–3236.

    CAS  Google Scholar 

  • Dossonnet V, Monedero V, Zagorec M, Galinier A, Perez-Martinez G and Deutscher J (2000) Phosphorylation of HPr by the bifunctional HPr Kinase/P-Ser-HPr phosphatase from Lactobacillus casei controls catabolite repression and inducer exclusion but not inducer expulsion. J. Bacteriol. 182: 2582–2590.

    PubMed  CAS  Google Scholar 

  • Dudez A-M, Chaillou S, Hissler L, Stentz R, Champomier-Verges M-C, Alpert C-A and Zagorec M 2002. Physiscal and genetic map of the Lactobacillus sakei 23K chromosome. Microbiology, 148: 421–431.

    PubMed  CAS  Google Scholar 

  • Dunny G and McKay LL (1999) Group II introns and expression of conjugative transfer functions in lactic acid bacteria. Antonie van Leeuwenhoek 76: 77–88.

    PubMed  CAS  Google Scholar 

  • Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14: 755–763.

    PubMed  CAS  Google Scholar 

  • Favier CF, Vaughan EE, De Vos WM, and Akkermans AD (2002) Molecular monitoring of succession of bacterial communities in human neonates. Appl. Environ. Microbiol. 68: 219–226.

    Google Scholar 

  • Felley CP, Corthésy-Theulaz I, Blanco Rivero J-L, Sipponen P, Kaufmann M, Bauerfeind P, Wiesel PH, Brassart D, Pfeifer A, Blum AL and Michetti P (2001) Favourable effect of an acidified milk (LC-1) on Heliocobacter pylori gastritis in man. Eur. J. Gastroenterol. Hepatol. 13: 25–29.

    Google Scholar 

  • Ferchichi M, Hemme D, Nardi M and Pamboukdjian N (1985) Production of methanethiol from methionine by Brevibacterium linens CNRZ 918. J. Gen. Microbiol. 131: 715.

    Google Scholar 

  • Fernandez-Espla MD, Garault P, Monnet V and Rul E (2000) Streptococcus thermophilus cell wall-anchored proteinase: release

    Google Scholar 

  • purification, and biochemical and genetic characterization. Appl. Environ. Microbiol. 66: 4772–4778.

    Google Scholar 

  • Ferrero M, Cesena C, Morelli L, Scolari G and Vescovo M (1996) Molecular characterization of Lactobacillus casei strains. FEMS Microbiol. Lett. 140: 215–219.

    Google Scholar 

  • Fonden R, Mogensen G, Tanaka R and Salminen S (2000) Effect of culture-containing dairy products on intestinal microflora, human nutrition and health - current knowledge and future perspectives. International Dairy Federation Bulletin number 352, IDF, Brussels.

    Google Scholar 

  • Forde A and Fitzgerald D (1999) Bacteriophage defense systems in lactic acid bacteria. Antonie van Leeuwenhoek 76: 89–113.

    Google Scholar 

  • Fox PF, McSweeney PLH and Lynch CM (1998) Significance of non-starter lactic acid bacteria in cheddar cheese. Aust. J. Dairy Technol. 53: 83–89.

    Google Scholar 

  • Fremaux C, Aigle M and Lonvaud FA (1993) Sequence analysis of Leuconostoc oenos DNA: organization of pLo13, a cryptic plasmid. Plasmid 30: 212–23.

    PubMed  CAS  Google Scholar 

  • Fujisawa T, Benno Y, Yaeshima T and Mitsuoka T (1992) Taxonomic study of the Lactobacillus acidophilus group, with recognition of Lactobacillus gallinarum sp. nov. and Lactobacillus johnsonii sp. nov. and synonymy of Lactobacillus acidophilus group A3 with the type strain of Lactobacillus amylovorus. Int. J. System. Bacteriol. 42: 487–491.

    Google Scholar 

  • Garault P, Le Bars D, Besset C and Monnet V (2002) Three oligopeptide-binding proteins are involved in the oligopeptide transport of Streptococcus thermophilus. J. Biol. Chem. 277: 32–39.

    Google Scholar 

  • Garmyn D, Monnet C, Martineau B, Guzzo J, Cavin J-F and Divies C (1996) Cloning and sequencing of the gene encoding alphaacetolactate decarboxylase from Leuconostoc oenos. FEMS Microbiol. Lett. 145: 445–450.

    Google Scholar 

  • Garvie EI, Farrow JAE and Phillips BA (1981) A taxonomic study of some strains of streptococci which grow at 10 °C but not at 45 °C including Streptococcus lactis and Streptococcus cremoris. Zbl. Bakteriol. Hyg. I Abt. Orig. C 2: 151–165.

    Google Scholar 

  • Garvie EI (1986) Genus Leuconostoc. In: Sneath PHA, Mair NS, Sharpe ME and Holt JG (Eds), Bergey’s Manual of Systematic Bacteriology, vol 2, 9th ed. (pp 1071–1075 ). Williams and Wilkins, Baltimore, MD

    Google Scholar 

  • Gasson MJ (1983) Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J. Bacteriol. 154: 1–9.

    PubMed  CAS  Google Scholar 

  • Germond JE, Delley M, D’Amico N and Vincent SL (2001) Heterologous expression and characterization of the exopolysaccharide from Streptococcus thermophilus Sfi39. Eur. J. Biochem. 268: 5149–5156.

    Google Scholar 

  • Gill HS, Rutherfurd KJ, Prasad J and Gopal PK (2000) Enhancement of natural and acquired immunity by Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Biiidobacterium lactis (HN019). Br. J. Nutr. 83: 167–176.

    Google Scholar 

  • Gill HS, Rutherfurd KJ and Cross ML (2001a) Dietary probiotic supplementation enhances natural killer cell activity in the elderly: an investigation of age-related immunological changes. J. Clin. Immunol. 21: 264–271.

    Google Scholar 

  • Gill HS, Shu Q, Lin H, Rutherfurd KJ and Cross ML (200 lb) Protection against translocating Salmonella typhimurium infection in mice by feeding the immuno-enhancing probiotic Lactobacillus rhamnosus strain HN001. Med. Microbiol. Immunol. (Berlin) 190: 97–104.

    Google Scholar 

  • Gindreau E and Lonvaud-Funel A (1999) Molecular analysis of the region encoding the lytic system from Oenococcus oeni temperate bacteriophage variant phil OMC. FEMS Microbiol. Lett. 171: 231–238.

    Google Scholar 

  • Gindreau E, Torlois S and Lonvaud-Funel A (1997) Identification and sequence analysis of the region encoding the site-specific integration system from Leuconostoc oenos (Oenococcus oeni) temperate bacteriophage phi-10MC. FEMS Microbiol. Lett. 147: 279–285.

    Google Scholar 

  • Godon J, Delorme C, Ehrlich SD and Renault P (1992) Divergence of genomic sequences between Lactococcus lactis subsp. lactis and Lactococcus lactis subsp.cremoris. Appl. Environ. Microbiol. 58: 4045–4047.

    Google Scholar 

  • Gold RS, Meagher Mm, Tong S, Hutkins RW, and Conway T (1996) Cloning and expression of the Zymomonas mobilis `Production of ethanol’ genes in Lactobacillus casei. Curr. Microbiol. 33: 256–260.

    Google Scholar 

  • Goldin BR and Gorbach SL (1980) Effect of milk and Lactobacillus feeding on human intestinal bacterial enzyme activity. Am. J. Clin. Nutr. 39: 756–761.

    Google Scholar 

  • Goldin BR, Swenson L, Dwyer J, Sexton M and Gorbach S (1980) Effect of diet and Lactobacillus acidophilus supplements on human fecal bacterial enzymes. J. Natl. Cancer Inst. 64: 255–261.

    Google Scholar 

  • Gonzalez CF and Kunka BS (1983) Plasmid transfer in Pediococcus spp.: Intergeneric and intrageneric transfer of pIP501. Appl. Environ. Microbiol. 46: 81–89.

    PubMed  CAS  Google Scholar 

  • Gonzalez CF and Kunka BS (1986) Evidence for plasmid linkage of raffinose utilization and associated a-galactosidase and sucrose hydrolase activity in Pediococcus pentosaceus. Appl. Environ. Microbiol. 51: 105–109.

    PubMed  CAS  Google Scholar 

  • Copal PK, Prasad J, Smart J and Gill HS (2001) In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli. Int. J. Food Microbiol. 67: 207–216.

    Google Scholar 

  • Gottschalk G (1986) Bacterial Metabolism, 2nd ed. Springer, New York.

    Google Scholar 

  • Graham DC and McKay LL (1985) Plasmid DNA in strains of Pediococcus cerevisiae and Pediococcus pentosaceus. Appl. Environ. Microbiol. 50: 532–534.

    PubMed  CAS  Google Scholar 

  • Granato D, Perotti F, Masserey I, Rouvet M, Golliard M, Servin AL and Brassart D(1999) Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus Johnsonii Lal to human enterocyte-like Caco-2 cells. Appl. Environ. Microbiol. 65: 1071–1077.

    Google Scholar 

  • Greene JD and Klaenhammer TR (1994) Factors involved in adherence of lactobacilli to human Caco-2 cells. Appl. Microbiol. 60: 4487–4494.

    CAS  Google Scholar 

  • Guedon G, Bourgoin F, Pebay M, Roussel Y, Colmin C, Simonet JM and Decaris B (1995) Characterization and distribution of two insertion sequences, IS 1191 and iso-IS 981, in Streptococcus thermophilus: does intergeneric transfer of insertion sequences occur in lactic acid bacteria co-cultures? Mol. Microbiol. 16: 6978.

    Google Scholar 

  • Haller D, Blum S, Bode C, Hammes WP and and Schiffrin EJ (2000a) Activation of human PBMC by non-pathogenic bacteria in vitro: evidence of NK cells as primary targets. Infect. Immun. 68: 752759.

    Google Scholar 

  • Haller D, Bode C, Hammes WP, Pfeifer AMA, Schiffrin EJ and Blum S (2000b) Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut 47: 79–87.

    PubMed  CAS  Google Scholar 

  • Hammes WP and Vogel RF (1995) The genus Lactobacillus. In: Wood BJB and Holzapfel WH (Eds) The Genera of Lactic Acid Bacteria (pp 19–54 ). Chapman and Hall, London.

    Google Scholar 

  • Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG and Welling GW (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by

    Google Scholar 

  • using molecular identification and detection methods. J. Pediatr. Gastroenterol. Nutr. 30: 61–67.

    Google Scholar 

  • Hassan AN and Frank JF (2001) Starter cultures and their use. In: Marth EH and Steele JL (Eds) Applied Dairy Microbiology, 2nd edition (pp 151–206 ). Marcel Dekker, Inc, New York.

    Google Scholar 

  • Heilig HGH, Zoetendal EG, Vaughan EE, Marteau P, Akkermans ADL and deVos WM (2002) Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl. Environ. Microbiol. 68: 14–123.

    Google Scholar 

  • Hols P, Slos P, Dutot P, Reymund J, Chabot P, Delplace B, Del-cour J and Mercenier A (1997) Efficient secretion of the model antigen M6-gp41E in Lactobacillus plantarum NCIMB 8826. Microbiology 143: 2733–41.

    Google Scholar 

  • Hughes D (2000) Evaluating genome dynamics: The constraints on rearrangements within bacterial genomes. Genome Biol. 1: Reviews 0006.1–0006. 8.

    Google Scholar 

  • Hofvendahl K and Hahn-Hagerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb. Technol. 26: 87–107.

    Google Scholar 

  • Itoh T, Fujimoto Y, Kawai Y, Toba T and Saito T (1995) Inhibition of food-borne pathogenic bacteria by bacteriocins from Lactobacillus gasseri. Lett. Appl. Microbiol. 21: 137–141.

    Google Scholar 

  • Jiang TA, Mustapha A and Savaiano DA (1996) Improvement of lactose digestion in humans by ingestion of unfermented milk containing Bifidobacterium longum. J. Dairy Sci. 79: 750–757.

    PubMed  CAS  Google Scholar 

  • Jobin M-P, Delmas F, Garmyn D, Divies C and Guzzo J. (1997) Molecular characterization of the gene encoding an 18-kilodalton small heat shock protein associated with the membrane of Leuconostoc oenos. Appl. Environ. Microbiol. 63: 609–614.

    Google Scholar 

  • Jobin M-P, Garmyn D, Divies C and Guzzo J (1999) The Oenococcus oeni clpX homologue is a heat shock gene preferentially expressed in exponential growth phase. J. Bacteriol. 181: 6634–6641.

    PubMed  CAS  Google Scholar 

  • Johnson JL, Phelps CF, Cummins CS, London J and Gasser F (1980) Taxonomy of the Lactobacillus acidophilus group. Int. J. System. Bacteriol. 30: 53–68.

    Google Scholar 

  • Kandler 0 (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek 49: 209–224.

    Google Scholar 

  • Kandler O and Weiss N (1986) Genus Lactobacillus. In: Sneath PHA, Mair NS, Sharpe ME and Holt JG (Eds.) Bergey’s Manual of Systematic Bacteriology, vol 2, 9th ed. (pp 1063–1065 ). Williams and Wilkins, Baltimore, MD.

    Google Scholar 

  • Kaplan H and Hutkins RW (2000) Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria. Appl. Environ. Microbiol. 66: 2682–2684.

    Google Scholar 

  • Kim D and Day DF (1994) A new process for the production of clinical dextran by mixed-culture fermentation of Lipomyces starkeyi and Leuconostoc mesenteroides. Enzyme Microb. Technol. 16: 844–48.

    CAS  Google Scholar 

  • Kim WJ, Ray B and Johnson MC (1992) Plasmid transfers by conjugation and electroporation in Pediococcus acidilactici. J. Appl. Bacterial. 72: 201–207.

    Google Scholar 

  • Kirjavainen PV, El-Nezami HS, Salminen SJ, Ahokas JT and Wright PF (1999) The effect of orally administered viable probiotic and dairy lactobacilli on mouse lymphocyte proliferation. FEMS Immunol. Med. Microbiol. 26: 131–135.

    Google Scholar 

  • Kitazawa H, Tomioka Y, Matsumura K, Aso H, Mizugaki M, Itoh T and Yamaguchi T (1994) Expression of mRNA encoding IFN alpha in macrophages stimulated with Lactobacillus gasseri. FEMS Microbiol. Lett. 120: 315–321.

    Google Scholar 

  • Klaenhammer TR and Russell WM (2000) Species of the Lactobacillus acidophilus complex. In: Robinson RK, Batt C and Patel

    Google Scholar 

  • PD (Eds) Encyclopedia of Food Microbiology, Vol. 2, (pp 1151–1157). Academic Press, San Diego, CA.

    Google Scholar 

  • Kosikowski FV (1982) Cheese and Fermented Milk Foods, 2nd edn. Kosikowski and Assoc., Brooktondale, NY.

    Google Scholar 

  • Kullen MJ, Sanozky-Dawes RB, Crowell DC and Klaenhammer TR (2000) Use of DNA sequence of variable regions of the 16SrRNA gene for rapid and accurate identification of bacteria in the Lactobacillus acidophilus complex. J. Appt. Microbiol. 89: 511–518.

    Google Scholar 

  • Kunkee RE (1991) Some roles of malic acid in the malolactic fermentation in wine making. FEMS Microbiol. Rev. 88: 55–72.

    CAS  Google Scholar 

  • Laban C, Diviès C and Guzzo J (1996a) Genetic organization of the mle locus and identification of a mleR-like gene from Leuconostoc oenos. Appt. Environ. Microbiol. 62: 4493–4498.

    Google Scholar 

  • Laban C, Guzzo J, Cavin JF and Diviès C (1996b) Cloning and characterization of the genes encoding the malolactic enzyme and the malate permease of Leuconostoc oenos. Appt. Environ. Microbiol. 62: 1274–1282.

    Google Scholar 

  • Lawrence RC, Thomas TD and Terzaghi BE (1976) Reviews of the progress of dairy science: cheese starters. J. Dairy Res. 43: 14 1193.

    Google Scholar 

  • Leathers TD, Hayman GT and Cote GL 1995. Rapid screening of Leuconostoc mesenteroides mutants for elevated proportions of alternan to dextran. Curr. Microbiol. 31: 19–22.

    Google Scholar 

  • Le Bourgeois P, Lautier M, van den Berghe L, Gasson MJ and Ritzenthaler P (1995) Physical and genetic map of the Lactococcus lactis subsp. cremoris MG1363 chromosome: comparison with that of Lactococcus lactis subsp. lactis IL1403 reveals a large genome inversion. J. Bacteriol. 177: 2840–2850.

    Google Scholar 

  • Le Bourgeois P, Daveran-Mingot ML and Ritzenthaler P (2000) Genome plasticity among related Lactococcus strains: identification of genetic events associated with macrorestriction polymorph-isms. J. Bacteriol. 182: 2481–2491.

    PubMed  Google Scholar 

  • Leong-Morgenthaler P, Ruettener C, Mollet B and Hottinger H (1990) Construction of a physical map of Lactobacillus bulgaricus. Proc. Third Symp. Lactic Acid Bact. A28.

    Google Scholar 

  • Leuschner RG and Hammes WP (1998) Degradation of histamine and tyramine by Brevibacterium linens during surface ripening of Munster cheese. J. Food Prot. 61: 874–878.

    PubMed  CAS  Google Scholar 

  • Lima PT and Correia AM (2000) Genetic fingerprinting of Brevibacterium linens by pulsed-field gel electrophoresis and ribotyping. Curr. Microbiol. 41: 50–55.

    PubMed  CAS  Google Scholar 

  • Link-Amster H, Rochat F, Saudan KY, Mignot O and Aeschlimann J-M (1994) Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake. FEMS Immunol. Med. Microbiol. 10: 55–64.

    Google Scholar 

  • Luchansky JB, Muriana PM and Klaenhammer TR (1988) Application of electroporation for transfer of plasmid DNA to Lactobacillus, Lactococcus, Leuconostoc, Listeria, Pediococcus, Bacillus, Staphylococcus, Enterococcus, and Propionibacterium. Mol. Microbiol. 2: 637–647.

    Google Scholar 

  • Maguin E, Prevost H, Ehrlich SD and Gruss A (1996) Efficient insertional mutagenesis in lactococci and other gram-positive bacteria. J. Bacteriol. 178: 931–5.

    PubMed  CAS  Google Scholar 

  • Marchand J and Vandenplas Y (2000) Microorganisms administered in the benefit of the host: myths and facts. Eur. J. Gastroenterol. Hepatol. 12: 1077–1088.

    Google Scholar 

  • Mariné-Font A, Vidal-Carou MC, Izquierdo-Pulido M, VencianaNogués MT and Hernandez-Jover T (1995) Les amines biogénes dans les aliments: leur signification, leur analyse. Ann. Fats. Exp. Chim. 88: 11–140.

    Google Scholar 

  • Marteau P and Rambaud JC (1993) Potential of using lactic acid bacteria for therapy and immunomodulation in man. FEMS Microbiol. Rev. 12: 207–222.

    CAS  Google Scholar 

  • Martinez-Murcia AJ and Collins MD (1990) A phylogenetic analysis of the genus Leuconostoc based on reverse transcriptase sequencing of 16S ribosomal RNA. FEMS Microbiol. Lett. 70: 73–84.

    CAS  Google Scholar 

  • Matsuzaki T and Chin J (2000) Modulating immune responses with probiotic bacteria. Immunol. Cell. Biol. 78: 67–73.

    PubMed  CAS  Google Scholar 

  • McKay LL (1985) Roles of plasmids in starter cultures. In: Gilliland SE (Ed) Bacterial Starter Cultures for Food (pp 159–174 ). CRC Press, Boca Raton, FL.

    Google Scholar 

  • Milk Industry Foundation (1998) Milk Facts. USA.

    Google Scholar 

  • Mitsuoka T (1992) The human gastrointestinal tract. In: Wood BJB (Ed) The Lactic Acid Bacteria, Vol. 1: The Lactic Acid Bacteria in Health and Disease (pp 69–114 ). Elsevier Science Publishers, Essex.

    Google Scholar 

  • Monedero V, Poncet S, Mijakovic I, Fieulaine S, Dossonnet V, Martin-Verstraete I, Nessler S and Deutscher J (2001) Mutations lowering the phosphatase activity of HPr kinase/phosphatase switch off carbon metabolism. EMBO J. 20: 3928–3937.

    PubMed  CAS  Google Scholar 

  • Moreno-Arribas V and Lonvaud-Funel A (2001) Purification and characterization of tyrosine decarboxylase of Lactobacillus brevis IOEB 9809 isolated from wine. FEMS Microbiol. Lett. 195: 103–107.

    CAS  Google Scholar 

  • Mori K, Yamazaki K, Ishiyama T, Katsumata M, Kobayashi K, Kawai Y, Inoue N and Shinano H (1997) Comparative sequence analyses of the genes coding for 16S rRNA of Lactobacillus casei-related taxa. Int. J. Syst. Bacteriol. 47: 54–57.

    Google Scholar 

  • Mundt JO (1970) Lactic acid bacteria associated with raw plant food material. J. Milk Food Technol. 33: 550–553.

    Google Scholar 

  • Mundt JO, Graham WF and McCarty IE (1967) Spherical lactic acid producing bacteria of southern-grown raw and processed vegetables. Appt. Microbiol. 15: 1303–1308.

    Google Scholar 

  • National Cheese Institute (1998) Cheese Facts. USA.

    Google Scholar 

  • Neeser J-R, Granato D, Rouvet M, Servin AL, Teneberg S and Karlsson K-A. (2000) Lactobacillus johnsonii Lal shares carbohydrate-binding specificities with several enteropathogenic bacteria. Glycobiology. 10: 1193–1199.

    Google Scholar 

  • Nicolas P, Bize L, Muri F, Hoebeke M, Rodolphe F, Ehrlich SD, Prum B and Bessières P (2002) Mining Bacillus subtilis chromosome heterogeneities using hidden Markov models. Nucleic Acids Res. 30: 1418–1426.

    PubMed  CAS  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S and von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10: 1–6.

    PubMed  CAS  Google Scholar 

  • Orla-Jensen S (1924) La classificationdes des bactéries lactiques. Lait 4: 468–474.

    Google Scholar 

  • O’Sullivan DJ (2001) Screening of intestinal microflora for effective probiotic bacteria. J. Agric. Food Chem. 49: 1751–1760.

    PubMed  Google Scholar 

  • Park YH, Hori H, Suzuki K, Osawa S and Komagata K (1987) Phylogenetic analysis of the coryneform bacteria by 5S rRNA sequences. J. Bacteriol. 169: 1801–1806.

    PubMed  CAS  Google Scholar 

  • Pasteur L (1861) Sur la fermentation visquese et la fermentation butyrique. Bull. Soc. Chim. Paris 11: 30–31.

    Google Scholar 

  • Pederson CS and Albury MN (1969) The sauerkraut fermentation. NY State Agric. Expt. Sta. ( Geneva, NY) Tech. Bull. Bulletin 824.

    Google Scholar 

  • Pedrosa MC, Golner BB, Goldin BR, Barakat S, Dallal GE and Russell RM (1995) Survival of yogurt-containing organisms and Lactobacillus gasseriA (ADH) and their effect on bacterial enzyme activity in the gastrointestinal tract of healthy and hypocholorhydric elderly subjects. Am. J. Clin. Nutr. 61: 353–359.

    Google Scholar 

  • Pérez PF, Minnaard J, Rouvet M, Knabenhans C, Brassart D, De Antoni GL and Schiffrin EJ (2001) Inhibition of Giardia intestinales by extracellular factors from Lactobacilli: an in vitro study. Appt. Environ. Microbiol. 67: 5037–5042.

    Google Scholar 

  • Perrin C, Guimont C, Bracquart P and Gaillard JL (1999) Expression of a new cold shock protein of 21.5 kDa and of the major cold shock protein by Streptococcus thermophilus after cold shock. Curr. Microbiol. 39: 342–347.

    Google Scholar 

  • Poolman B, Royer TJ, Mainzer SE and Schmidt BF (1989) Lactose transport system of Streptococcus thermophilus: a hybrid protein with homology to the melibiose carrier and enzyme III of phosphoenolpyruvate-dependent phosphotransferase systems. J. Bacteriol. 171: 244–253.

    PubMed  CAS  Google Scholar 

  • Pouwels PH, Leer RJ, Shaw M, Heijne den Bak-Glashouwer MJ, Tielen FD, Smit E, Martinez B, Jore J and Conway PL (1998) Lactic acid bacteria as antigen delivery vehicles for oral immunization purposes. Int. J. Food Microbiol. 41: 155–67.

    Google Scholar 

  • Prasad J, Gill HS, Smart JB and Gopal PK (1998) Selection and characterisation of Lactobacillus and Bifidobacterium strains for use as probiotics. Int. Dairy J. 8: 993–1002.

    Google Scholar 

  • Rantsiou K, Phister T, McKay LL, Dunny G and Mills D (1999) Broad host range mobilization of plasmid derivatives by the lactococcal conjugal element pRS01. Proc. Sixth Symp. Lactic Acid Bact. E13.

    Google Scholar 

  • Rattray FP and Fox PF (1999) Aspects of enzymology and biochemical properties of Brevibacterium linens relevant to cheese ripening: a review. J. Dairy Sci. 82: 891–909.

    PubMed  CAS  Google Scholar 

  • Rattray FP, Fox PF and Healy A (1997) Specificity of an extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine beta-casein. Appl. Environ. Microbiol. 63: 2468–2471.

    Google Scholar 

  • Reiter B and Oram JD (1982) Nutritional studies on cheese starter. 1. Vitamin and amino acid requirements of single strain starters. J. Dairy Res. 29: 63–68.

    Google Scholar 

  • Richards M and Macrae RM (1964) The significance of the use of hops in regard to the biological stability of beer. II. The development of resistance to hop resins by strains of lactobacilli. J. Inst. Brewing 70: 484–488.

    Google Scholar 

  • de Roos NM and Katan MB (2000) Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: a review of papers published between 1988 and 1998. Am. J. Clin. Nutr. 71: 405–411.

    PubMed  Google Scholar 

  • Rozen S and Skaletsky HJ (1998) Primer3 http://www-genome.wi.mit.edu/genome_softwar e/other/primer3.html

    Google Scholar 

  • Russell WM and Klaenhammer TR (200la) Identification and cloning of gusA,encoding a new ß-glucuronidase from Lactobacillus gasseri ADH. Appl. Environ. Microbiol. 67: 1253–1267.

    Google Scholar 

  • Russell WM and Klaenhammer TR (2001b) An efficient system for directed integration into the Lactobacillus acidophilus and Lactobacillus gasseri chromosome via homologous recombination. Appl. Environ. Microbiol. 67: 4361–4364.

    Google Scholar 

  • Saavedra JM, Bauman NA, Oung I, Perman JA and Yolken RH (1994) Feeding of Bifidobacterium bifidum and Streptococcus thermophilus to infants in hospital for prevention of diarrhoea and shedding of rotavirus. Lancet 344: 1046–1049.

    PubMed  CAS  Google Scholar 

  • Salama M, Sandine WE and Giovannoni S (1991) Development and application of oligonucleotide probes for identification of Lactococcus lactis subsp. cremoris. Appl. Environ. Microbiol. 57: 1313–1318.

    Google Scholar 

  • Salema M, Capucho I, Poolman B, San Roman MV and Dias MC (1996) In vitro reassembly of the malolactic fermentation pathway of Leuconostoc oenos (Oenococcus oeni). J. Bacteriol. 178: 5537–5539.

    PubMed  CAS  Google Scholar 

  • Sanders ME and Klaenhammer TR (2001) Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J. Dairy Sci. 84: 319–331.

    PubMed  CAS  Google Scholar 

  • Sandine WE (1988) New nomenclature of the non-rod-shaped lactic acid bacteria. Biochemie 70: 519–522.

    CAS  Google Scholar 

  • Schiffrin EJ, Rochat F, Link-Amster H, Aeschlimann J-M and Donnet-Hughes A (1995) Immunomodulation of human blood cells following the ingestion of lactic acid bacteria. J. Dairy Sci. 78: 491–497.

    PubMed  CAS  Google Scholar 

  • Schleifer K-H (1987) Recent changes in the taxonomy of lactic acid bacteria. FEMS Microbiol. Rev. 46: 201–203.

    Google Scholar 

  • Schleifer KH and Ludwig W (1995) Phylogenetic relationships of lactic acid bacteria. In: Wood BJB and Holzapfel WH (Eds) The Genera of Lactic Acid Bacteria (pp 7–18). Chapman and Hall, London.

    Google Scholar 

  • Senor P, Sasaki T, Ehrlich SD and Magnin E (2002) Electrotransformation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis with various plasmids. Appl. Environ. Microbiol. 68: 46–52.

    Google Scholar 

  • Server-Busson C, Foucaud C and Leveau J-Y (1999) Selection of dairy Leuconostoc isolates for improtant technological properties. J. Dairy Res. 66: 245–56.

    CAS  Google Scholar 

  • Sheih YH, Chiang BL, Wang LH, Liao CK and Gill HS (2001) Systemic immunity-enhancing effects in healthy subjects following dietary consumption of the lactic acid bacterium Lactobacillus rhamnosus HN001. J. Am. Coll. Nutr. 20 (2 Suppl): 149–56.

    PubMed  CAS  Google Scholar 

  • Simpson WJ and Taguchi H (1995) The genus Pediococcus, with notes on the genera Tetratogenococcus and Aerococcus. In: Wood BJB and Holzapfel WH (Eds) The Genera of Lactic Acid Bacteria (pp 125–172 ). Chapman and Hall, London.

    Google Scholar 

  • Slos P, Dutot P, Reymund J, Kleinpeter P, Prozzi D, Kieny MP, Del-cour J, Mercenier A and Hols P (1998) Production of cholera toxin B subunit in Lactobacillus. FEMS Microbiol. Lett. 169: 29–36.

    Google Scholar 

  • Solow BT and Somkuti GA (2000) Molecular properties of Streptococcus thermophilus plasmid pER35 encoding a restriction modification system. Curr. Microbiol. 42: 122–128.

    Google Scholar 

  • Stuart M, Chou L-S and Weimer BC (1998) Influence of carbohydrate starvation and arginine on culturability and amino acid utilization of Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 65: 665–673.

    Google Scholar 

  • Steidler L, Robinson K, Chamberlain L, Schofield KM, Remaut E, Le Page RW and Wells JM (1998) Mucosal delivery of murine interleukin-2 (IL-2) and IL-6 by recombinant strains of Lactococcus lactis coexpressing antigen and cytokine. Infect. Immun. 66: 3183–3189.

    Google Scholar 

  • Sutherland 1W (1996) Extracellular polysaccharides. In: Rehm H-J, Reed G, Puhler A and Stadler P (Eds) Biotechnology, 2nd ed., Vol 6: Products of Primary Metabolism (pp 613–657 ). VCH, New York.

    Google Scholar 

  • Tallgren AH, Airaksinen U, von Weissenberg R, Ojamo H, Kuusisto J and Leisola M (1999) Exopolysaccharide-producing bacteria from sugar beets. Appl. Environm. Microbiol. 65: 862–64.

    Google Scholar 

  • Takahashi T, Nakagawa E, Nara T, Yajima T and Kuwata T (1998) Effects of orally ingested Bifidobacterium longum on the mucosa] IgA response of mice to dietary antigens. Biosci. Biotechnol. Biochem. 62: 10–15.

    Google Scholar 

  • Tannock GW (2000) Identification of lactobacilli and bifidobacteria. Curr. Issues Intest. Microbiol. 1: 39–50.

    Google Scholar 

  • Tannock GW, Munro K, Harmsen HJ, Welling GW, Smart J and Gopal PK (2000) Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl. Environ. Microbiol. 66: 2578–2588.

    Google Scholar 

  • Tatusov RL, DNatale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND and Koonin EV (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 29: 22–28.

    PubMed  CAS  Google Scholar 

  • Tejada-Simon MV and Pestka JJ (1999) Proinflammatory cytokine and nitric oxide induction in murine macrophages by cell wall

    Google Scholar 

  • and cytoplasmic extracts of lactic acid bacteria. J. Food Prot. 62: 1435–44.

    Google Scholar 

  • Tenreiro R, Santos MA, Paveia H and Vieira G (1994) Inter-strain relationships among wine leuconostocs and their divergence from other Leuconostoc species, as revealed by low frequency restriction fragment analysis of genomic DNA. J. Appl. Bacteriol. 77: 271–280.

    Google Scholar 

  • Thompson JK, McConville KJ, McReynolds C and Collins MA (1999) Potential of conjugal transfer as a strategy for the introduction of recombinant genetic material into strains of Lactobacillus helveticus. Appl. Environ. Microbiol. 65: 1910–1914.

    Google Scholar 

  • Tissier H (1900) Recherches sur la flore intestinale des nourrissons (etat normal et pathologique) Paris Thèses: 1–253.

    Google Scholar 

  • Tissier H (1906) Traitement des infections intestinales par la méthode de la flore bactérienne de l’intestin. Crit. Rev. Soc. Biol. 60: 359–361.

    Google Scholar 

  • Tonon T, Bourdineaud J-P and Lonvaud-Funel A (2001) The arcABC gene cluster encoding the arginine deiminase pathway of Oenococcus oeni, and arginine induction of a CRP-like gene. Res. Microbiol. 152: 653–661.

    Google Scholar 

  • Tynkkynen S, Satokari R, Saarela M, Mattila-Sandholm T and Saxelin M (1999) Comparison of ribotyping, randomly amplified polymorphic DNA analysis, and pulsed-field gel electrophoresis in typing of Lactobacillus rhamnosus and L. casei strains. Appl. Environ. Microbiol. 65: 3908–3914.

    Google Scholar 

  • Ummadi M and Weimer BC (2001) Tryptophan metabolism in Brevi-bacterium linens BL2. J. Dairy Sci. 84: 1773–1782.

    PubMed  CAS  Google Scholar 

  • Valdes-Stauber N and Scherer S (1996) Nucleotide sequence and taxonomical distribution of the bacteriocin gene lin cloned from Brevibacterium linens M18. Appl. Environ. Microbiol. 62: 1283–1286.

    PubMed  CAS  Google Scholar 

  • Vaughan EE, van den Bogaard PTC, Catzeddu P, Kuipers OP and de Vos WM (2001) Activation of silent gal genes in the lac-gal regulon of Streptococcus thermophilus. J. Bacteriol. 183: 1184–1194.

    Google Scholar 

  • Vesa T, Pochart P and Marteau P (2000) Pharmacokinetics of Lactobacillus plantarum NCIMB 8826, Lactobacillus fermentum KLD, and Lactococcus lactis Mg 1363 in the human gastrointestinal tract. Aliment. Pharmacol. Ther. 14: 823–828.

    Google Scholar 

  • Viana R, Monedero V, Dossonnet V, Vadeboncoeur C, Perez-Martinez G and Deutscher J (2000) Enzyme I and HPr from Lactobacillus casei: their role in sugar transport, carbon catabolite repression and inducer exclusion. Mol. Microbiol. 36: 570–584.

    Google Scholar 

  • van Vuuren HJJ and Dicks LMT (1993) Leuconostoc oenos: A review. Am. J. Enol. Viticult. 44: 99–112.

    Google Scholar 

  • Wagner RD, Pierson C, Warner T, Dohnalek M, Hilty M and Balish E (2000) Probiotic effects of feeding heat-killed Lactobacillus acidophilus and Lactobacillus casei to Candida albicans-

    Google Scholar 

  • colonized immunodeficient mice. J. Food Prot. 63: 638–644. Walker DC, Aoyama K and Klaenhammer TR (1996) Electro-

    Google Scholar 

  • transformation of Lactobacillus acidophilus group Al. FEMS Microbiol. Lett. 138: 233–237.

    Google Scholar 

  • Weimer BC, Yi X and Brown R (2000) Autocatalytic processing of the protease from Brevibacterium linens BL2: a kinetic analysis for the degradation of casein. International Dairy Federation Biennial Cheese Flavor Conference, Banff, Alberta.

    Google Scholar 

  • Wells JM, Robinson K, Chamberlain LM, Schofield km and Le Page RW (1996) Lactic acid bacteria as vaccine delivery vehicles. Antonie van Leeuwenhoek 70: 317–330.

    Google Scholar 

  • Yasui H, Shida K, Matsuzaki T and Yokokura T (1999) Immunomodulatory function of lactic acid bacteria. Antonie van Leeuwenhoek 76: 383–389.

    PubMed  CAS  Google Scholar 

  • Ye JJ and Saier MH (1995) Cooperative binding of lactose and HPr(Ser-P) to the lactose:H+ permease of Lactobacillus brevis. Proc. Natl. Acad. Sci. U.S.A. 92: 417–421.

    PubMed  CAS  Google Scholar 

  • Ye JJ, Reizer J, Cui X and Saier MH (1994) ATP-dependent phosphorylation of serine in HPr regulates lactose:H+ symport in Lactobacillus brevis. Proc. Natl. Acad. Sci. U.S.A. 91: 31023106.

    Google Scholar 

  • Yuki N, Watanabe K, Mike A, Tagami Y, Tanaka R, Ohwaki M and Morotomi M (1999) Survival of a probiotic, Lactobacillus ca-sei strain Shirota, in the gastrointestinal tract: selective isolation from faeces and identification using monoclonal antibodies. Int. J. Food Microbiol. 48: 51–57.

    Google Scholar 

  • Zapparoli G, Reguant C, Bordons A, Torriani S and Dellaglio F (2000) Genomic DNA fingerprinting of Oenococcus oeni strains by pulsed-field gel electrophoresis and randomly amplified polymorphic DNA-PCR. Curr. Microbiol. 40: 351–355.

    Google Scholar 

  • Ze-Ze L, Tenreiro R, Brito L, Santos MA and Paveia H (1998) Physical map of the genome of Oenococcus oeni PSU-1 and localization of genetic markers. Microbiology 144: 1145–1156.

    PubMed  CAS  Google Scholar 

  • Ze-Ze L, Tenreiro R and Paveia H (2000) The Oenococcus oeni genome: Physical and genetic mapping of strain GM and comparison with the genome of a ‘divergent’ strain, PSU-1. Microbiology 146: 3195–3204.

    PubMed  CAS  Google Scholar 

  • Zhou JS, Shu Q, Rutherfurd KJ, Prasad J, Gopal PK and Gill HS (2000a) Acute oral toxicity and bacterial translocation studies on potentially probiotic strains of lactic acid bacteria. Food Chem. Toxicol. 38: 153–61.

    Google Scholar 

  • Zhou JS, Shu Q, Rutherfurd KJ, Prasad J, Birtles MJ, Gopal PK and Gill HS (2000b) Safety assessment of potential probiotic lactic acid bacterial strains Lactobacillus rhamnosus HN001, Lb. acidophilus HN017, and Bifidobacterium lactis HN019 in BALB/c mice. Int. J. Food Microbiol. 56: 87–96.

    Google Scholar 

  • Zhou JS, Gopal PK and Gill HS (2001) Potential probiotic lactic acid bacteria Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019) do not degrade gastric mucin in vitro. Int. J. Food Microbiol. 63: 81–90.

    Google Scholar 

  • Zuniga M, Pardo I and Ferrer S (1996) Transposons Tn916 and Tn925 can transfer from Enterococcus faecalis to Leuconostoc oenos. FEMS Microbiol. Lett. 135: 179–185.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Klaenhammer, T. et al. (2002). Discovering lactic acid bacteria by genomics. In: Siezen, R.J., Kok, J., Abee, T., Schasfsma, G. (eds) Lactic Acid Bacteria: Genetics, Metabolism and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2029-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2029-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6141-6

  • Online ISBN: 978-94-017-2029-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics