Skip to main content

Bacteriocins: mechanism of membrane insertion and pore formation

  • Chapter
Lactic Acid Bacteria: Genetics, Metabolism and Applications

Abstract

Lactic acid bacteria produce several types of pore forming peptides. Class I bacteriocins are lantibiotics that contain (methyl)lanthionine residues that may form intramolecular thioether rings. These peptides generally have a broad spectrum of activity and form unstable pores. Class II bacteriocins are small, heat stable peptides mostly with a narrow spectrum of activity. Most bacteriocins interact with anionic lipids that are abundantly present in the membranes of Gram-positive bacteria. ‘Docking molecules’ may enhance the conductivity and stability of lantibiotic pores, while ‘receptors’ in the target membrane may determine specificity of class II bacteriocins. Insertion into the membrane of many bacteriocins is proton motive force driven. Lantibiotics may form pores according to a ‘wedge-like’ model, while class II bacteriocins may enhance membrane permeability either by the formation of a ‘barrel stave’ pore or by a ‘carpet’ mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abee T, Klaenhammer T-R and Letellier L (1994) Kinetic studies of the action of lactacin F, a bacteriocin produced by Lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane. Appl. Environ. Microbiol. 60: 1006–1013

    Google Scholar 

  • Abee T, Rombouts FM, Hugenholz J, Guihard G and Letellicr L (1994) Mode of action of nisin Z against Listeria monocytogenes Scott A grown at high and low temperatures. Appl. Environ. Microbiol. 60: 962–1978

    Google Scholar 

  • Allgaer H, Jung G, Werner RG Schneider U and Zähner H (1986) Epidermin: sequencing a heterodetic tetracyclic 21-peptide amide antibiotic. Eur. J. Biochem. 160: 9–22

    Google Scholar 

  • Allison GE, Fremaux C and Klaenhammer TR (1994) Expansion of bacteriocin activity and host range complementation of two peptides encoded within the lactacin F operon. J. Bacteriol. 176: 2235–2241

    PubMed  CAS  Google Scholar 

  • Bechinger B (1997) Structure and function of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J. Membr. Biol. 156: 197–211

    Article  PubMed  CAS  Google Scholar 

  • Benz R, Jung G and Sahl H-G (1991) Mechanism of channel formation by lantibiotics in black lipid membranes. In: Jung G and Sahl H-G (Eds) Nisin and novel lantibiotics (pp 359–372 ). Escom, Leiden

    Google Scholar 

  • Bolhuis H, Molenaar D, van Veen HW, Poolman B, Driessen AJM and Konings WN (1996) Multidrug resistance in Lactococcus lattis: evidence for ATP-dependent drug extrusion from the inner leaflet of the cytoplasmic membrane. EMBO J. 15: 4239–4245

    PubMed  CAS  Google Scholar 

  • Breukink E, van Kraaij C, Demel RA, Siezen RJ, de Kruijff B and Kuipers OP (1998) The orientation of nisin in membranes. Biochemistry 37: 8153–8162

    Article  PubMed  CAS  Google Scholar 

  • Breukink E, van Kraaaij C, Demel RA, Siezen RJ, Kuipers OP and de Kruijff B (1997) The C-terminal region of nisin is responsible for the initial interaction of nisin with the target membrane. Biochemistry 36: 6968–6976

    Article  PubMed  CAS  Google Scholar 

  • Brötz H, Josten M, Wiedmann I, Schneider U, Gotz F, Bierbaum G and Sahl H-G (1998) Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol. Microbiol. 30: 317–327

    Google Scholar 

  • Bruno, MEC and Montville TJ (1993) Common mechanistic action of bacteriocins form lactic acid bacteria. Appl. Environ. Microbiol. 1993: 3003–3010

    Google Scholar 

  • Bruno MEC, Kaiser A and Montville TJ (1992) Depletion of proton motive force by nisin in Listeria monocytogenes cells. Appl. Environ. Microbiol. 58: 2255–2259

    Google Scholar 

  • Brurberg MB, Nes IF and Eijsink VGH (1997) Pheromone-induced production of antimicrobial peptides in Lactobacillus. Mol. Microbiol 26: 347–360

    Google Scholar 

  • Casaus P, Nilsen T. Cintas LM, Nes IF, Hernandez PE and Holo H (1997) Enterocin B, a new bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin A. Microbiology 143: 2287–2294

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Ludescher RD and Montville TJ (1998) Influence of lipid composition on pediocin PA-1 binding to phospholipid vesicles. Appt. Environ. Microbiol. 64: 3530–3532

    Google Scholar 

  • Chen Y, Ludescher RD and Montville (1997a) Electrostatic interactions but not the YGNGV consensus motif, govern the binding of pediocin PA-1 and its fragments to phospholipid vesicles. Appl. Environ. Microbiol. 63: 4770–4777

    Google Scholar 

  • Chen Y, Shapira R, Eisenstein M and Montville TJ (19976) Functional characterization of pediocin PA-1 binding to liposomes in the absence of a protein receptor and its relationship to a predicted tertiairy structure. Appt Environ. Microbiol. 63: 524–531

    Google Scholar 

  • Cheng J, Guffanti AA and Krulwich TA (1997) A two-gene ABC-type transport system that extrudes Na+ in Bacillus subtilis is induced by ethanol or protonophore. Mol. Microbiol. 23: 1107–1120

    Google Scholar 

  • Chikindas ML, Garcia-Garcerâ ML, Driessen AJM, Ledeboer AM, Nissen-Meyer J, Nes IF, Abee T, Konings WN and Venema G (1993) Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PACI.0, forms hydrophilic pores in the cytoplasmic membrane of target cells. Appl. Environ. Microbiol. 59: 35773584

    Google Scholar 

  • Cintas LM, Casaus LS, Hâverstein LS, Hernandez PE and Nes IF (1997) Biochemical and genetic characterization of enterocin P, a novel Sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl. Environ. Microbiol. 63: 4321–4330

    Google Scholar 

  • Contreras BGL, de Vuyst L, Devreese B, Busanyova K, Raymaekers J, Bosman F, Sablon E and Vandamme EJ (1997) Isolation, purification and amino acid sequence of lactobin A, one of the two bacteriocins produced by Lactobacillus amylovorus LMG P-13139. Appl. Environ. Microbiol. 63: 13–20

    Google Scholar 

  • Crandell D and Montville TJ (1998) Nisin resistance in Listeria monocytogene. ATCC 700302 is a complex phenotype. Appl. Environ. Microbiol. 64: 231–237

    Google Scholar 

  • Delves-Broughton J, Blackburn P, Evans RJ and Hugenholtz J (1996) Applications of the bacteriocin, nisin. Antonie van Leeuwenhoek 69: 193–202

    Article  PubMed  CAS  Google Scholar 

  • Demel RA, Peelen T, Siezen RJ, de Kruijff B and Kuipers OP (1996) Nisin Z, mutant nisin Z and lacticin 481 interactions with anionic lipids correlate with antimicrobial activity. A monolayer study. Eur. J. Biochem. 235: 267–274

    Google Scholar 

  • Dielbandhoesing SK, Zhang H, Caro LHP, van der Vaart JM, Klis FM, Verrips CT and Brul S (1998) Specific cell wall proteins confer resistance to nisin upon yeast cells. Appl. Environ. Microbiol. 64: 4047–4052

    Google Scholar 

  • Diep DB, Hâverstein LS and Nes IF (1996) Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum Cl 1. J. Bacteriol. 178: 4472–4483

    PubMed  CAS  Google Scholar 

  • Driessen AJM, van den Hooven HW, Kuiper W, van de Kamp M, Sahl H-G, Konings RNH and Konings WN (1995) Mechanistic studies of lantibiotic-induced permeabilization of phospholipid vesicles. Biochemistry 34: 1606–1614

    Article  PubMed  CAS  Google Scholar 

  • Eijsink VGH, Skeie M, Middelhove H. Brurberg MB and Nes IF (1998) Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl. Environ. Microbiol. 64: 3275–3281

    Google Scholar 

  • Eisenberg D (1984) Three-dimensional structure of membrane and surface proteins. Ann. Rev. Biochem. 53: 595–623

    Article  PubMed  CAS  Google Scholar 

  • Fimland G, Blingsmo OR, Sletten K, Jung G, Nes IF and Nissen-Meyer J (1996) New biologically active hybrid bacteriocins constructed by combining regions from various pediocin-like bacteriocins: the C-terminal region is important for determining specificity. Appl. Environ. Microbiol. 62: 3313–3318

    Google Scholar 

  • Fimland G, Jack R, Jung G, Nes IF and Nissen-Meyer J (1998) The bactericidal activity of pediocin PA-1 is specifically inhib ited by a 15-mer fragment that spans the bacteriocin from the center towards the C-terminus. Appl. Environ. Microbiol. 64: 5057–5060

    Google Scholar 

  • Fleury Y, Dayem MA, Montagne JJ, Chaboisseau E, Lecaer JP, Nicolas P and Delfour A (1996) Covalent structure, synthesis, and structure-function studies of mesentericin Y 10537, a defensive peptide from Gram-positive bacteria Leuconostoc mesentoraides. J. Biol. Chem 271: 14421–14429

    Google Scholar 

  • Fregeau Gallagher NL, Sailer M, Niemczura WP, Nakashima TT, Stiles ME and Vederas JC (1997) Three-dimensional structure of leucocin A in trifluoroethanol and dodecylphosphocholine micelles: spatial location of residues critical for biological activity in type lia bacteriocins from lactic acid bacteria. Biochemistry 36: 15062–15072

    Article  PubMed  CAS  Google Scholar 

  • Fremaux C, Ahn C and Klaenhammer TR (1993) Molecular analysis of the lactacin F operon. Appl. Environ. Microbiol. 59: 3906–3915

    Google Scholar 

  • Freund S, Jung G, Gutbrod O, Folkers G and Gibbons WA (1991a) The three dimensional solution structure of gallidermin determined by NMR-based molecular graphics. In: Jung G and Sahl H-G (Eds) Nisin and novel lantibiotics (pp 91–103 ). Escom publishers, Leiden, The Netherlands

    Google Scholar 

  • Freund S, Jung G, Gibbons WA and H-G-Sahl (1991b) NMR and circular dichroism studies on PepS. In: Jung G and Sahl H-G (Eds) Nisin and novel lantibiotics (pp 103–113 ). Escom publishers, Leiden, The Netherlands

    Google Scholar 

  • Garver KI and Muriana PM (1994) Purification and partial amino acid sequence of Curvaticin FS47, a heat-stable bacteriocin produced by Lactobacillus curvatus FS47. Appt Environ. Microbiol. 60: 2191–2195

    CAS  Google Scholar 

  • Gillmore MS, Segarra RA, Booth MC, Bogie CP, Hall LR and Clewell DB (1994) Genetic structure of the Enterococcus faecalis plasmid pASI-encoded cytolitic toxin system and its relationship to lantibiotic determinants. J. Bacteriol. 176: 7355–7344

    Google Scholar 

  • Gilson L, Mahanty HK and Kolter R (1990) Genetic analysis of an MDR-like export system: the secretion of colicin V. EMBO J. 9: 3875–3884

    Google Scholar 

  • Gross E and Morell JL (1971) The structure of nisin. J. Am. Chem. Soc. 93: 4634–4635

    Article  PubMed  CAS  Google Scholar 

  • Gross E, Klitz HH and Nebelin E (1973) Die structur des subtilins. Hoppe Seyler’s Z. Physiol. Chem. 354: 810–812

    Google Scholar 

  • Hastings JW, Sailor M, Johnson K, Roy L, Vederas JC, Stiles ME (1991) Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J. Bacteriol. 173: 7491–7500

    PubMed  CAS  Google Scholar 

  • Hauge HH, Mantzilas D, Moll GN, Konings WN, Driessen AJM, Eijsink VGH and Nissen-Meyer J (1998a) Plantaricin A is an amphiphilic a-helical bacteriocin-like pheromone which exerts antimicrobial and pheromone activities through different mechanisms. Biochemistry 37: 16026–16032

    Article  PubMed  CAS  Google Scholar 

  • Hauge HH, Nissen-Meyer J, Nes IF and Eijsink VGH (1998b) Amphiphilic a-helices are important structural motifs in the a and ß peptides that constitute the bacteriocin lactococcin G. Eur. J. Biochem. 251: 565–572

    Google Scholar 

  • Hauge HH, Mantzilas D, Eijsink VGH and Nissen-Meyer J (1999) membrane-mimicking entities induce structuring of the two-peptide bacteriocins plantaricin E/F and plantaricin J/K. J. Bacteriol. 181: 740–747

    Google Scholar 

  • Hâverstein LS, Diep DB and Nes IF (1995) A family of bacteriocin ABC transporters carries out proteolytic processing of their substrates concomitant with export. Mol Microbiol 16: 229–240

    Article  Google Scholar 

  • Hill C, Meaney B and Ross RP (1998) Exploitation of the novel two-component lantibiotic, lacticin 3147: control of mastitis and food uses. Third international workshop on lantibiotics. Blaubeuren, Germany, April 5–8, p 39

    Google Scholar 

  • Hoick A, Axelsson L, Birkeland SE, Aukrust T and Blom H (1992) Purification and amino acid sequence of sakacin A, a bacterocin from Lactobacillus sake Lb706. J. Gen. Microbiol. 138: 271–5272

    Google Scholar 

  • Hoick AL, Axelsson L, Huhne K and Krockel L (1994) Purification and cloning of sakacin 674, a bacteriocin from Lactobacillus sake Lb674. FEMS Microbiol. Lett. 115: 143–149

    Google Scholar 

  • Halo H, Nilssen O and Nes IF (1991) Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J. Bacteriol. 173: 3879–3887

    Google Scholar 

  • Homblé F, Cabiaux V and Ruyssschaert J-M (1998) Channel or channel-like activities associated with pore forming proteins or peptides? Mol. Microbiol. 27: 1261–1263

    Google Scholar 

  • Jack RW, Carne A, Metzger J, Stefanovitc S, Sahl H-G, Jung G and Tagg JR (1994) Elucidation of the structure of SA-FF22, a lanthionine-containing antibacterial peptide produced by Streptococcus pyogenes strain FF22. Eur. J. Biochem. 220: 455–462

    Google Scholar 

  • Jack RW. Tagg JR and Ray B (1995) Bacteriocins of Gram-positive bacteria. Microbiol. Rev. 59: 171–200

    Google Scholar 

  • Jack RW, Wan J, Gordon J, Harmark K, Davidson BE, Hillier AJ, Wettenhall REH, Hickey MW and Coventry MJ (1996) Characterization of the chemical and antimicrobial properties of piscicolin 126, a bacteriocin produced by carnobacterium piscicola JG 126. Appl. Environ. Microbiol. 62: 2897–2903.

    Google Scholar 

  • Jiménez-Diaz R, Ruiz-Barba JL, Cathcart DP, Hobo H, Nes IF. Sletten KH and Warner PJ (1995) Purification and partial amino acid sequence of plantaricin S, a bacteriocin produced by Lactobacillus plantarum LPCO10, the activity of which depends on the complementary action of two peptides. Appl. Environ. Microbiol. 61: 4459–4463

    Google Scholar 

  • Jung G and Sahl H-G (1991) Nisin and novel lantibiotics. Escom Leiden, The Netherlands

    Google Scholar 

  • Kaiser AL and Montville TJ (1996) Purification of the bacteriocin bavaricin MN and characterization of its mode of action against Listeria monocytogenes Scott A cells and lipid vesicles. Appl. Environ. Microbiol. 62: 4529–4535

    PubMed  CAS  Google Scholar 

  • Kanatani K, Tahara T, Oshimura M, Sano K and Umezawa C (1995) Cloning and nucleotide sequence of the gene for acidocin 8912, a bacteriocin from Lactobacillus acidophilus TK 8912. Lett. Appl. Microbiol. 21: 384–386

    Google Scholar 

  • Kellner R, Jung G, Homer T, Zahner H, Schnell N, Entian KD and Gotz F (1988) Gallidermin: a new lanthionine-containing polypeptide antibiotic. Eur. J. Biochem. 177: 53–59

    Google Scholar 

  • Kellner R, Jung G and Sahl H-G (1991) Structure elucidation of the tricyclic lantibiotic Peps containing eight positively charged amino acids. In: Jung G and Sahl H-G (Eds) Nisin and novel lantibiotics (pp 141–1581 ). Escom publishers, Leiden, The Netherlands

    Google Scholar 

  • Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39–86

    CAS  Google Scholar 

  • Koponen O, Takata TM, Kilpeläinen N and Saris PE (1998) Dual function of NisI, an immunity lipoprotein at the membrane surface and a factor stimulating nisin activity in the soluble form. Third International Workshop on Lantibiotics, Blaubeuren, p 29

    Google Scholar 

  • Kuipers OP, Beerthuyzen MM, Siezen RJ and de Vos WM (1993) Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisi genes for the development of immunity. Eur. J. Biochem. 216: 281–291

    Google Scholar 

  • Larsen AG and Norrung B (1993) Inhibition of Listeria monocytogenes by Bavaricin A, a bacteriocin produced by Lactobacillus bavaricus MI401. Lett. Appl. Microbiol. 17: 132–134

    Article  CAS  Google Scholar 

  • Leer RJ, van der Vossen JMBM, van der Giezen M, van Noort JM and Pouwels PH (1995) Genetic analysis of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus. Microbiology 141: 1629–1635

    Article  PubMed  CAS  Google Scholar 

  • Marciset O, Jeronimus-Stratingh MC, Mollet B and Poolman B (1997) Thermophilin 13, a nontypical antilisterial poration complex bacteriocin that functions without a receptor. J. Biol. Chem. 22: 14277–14284

    Google Scholar 

  • Martin LJM, Ruysschaert JM, Sanders D and Giffard C (1996) Interaction of the lantibiotic nisin with membranes revealed by fluorescence quenching of an introduced typtophan. Eur. J. Biochem. 239: 156–164

    Google Scholar 

  • Marugg JD, Gonzalez CF, Kunka BS, Ledeboer AM, Pucci MJ, Toonen MY, Walker SA, Zoetmulder LCM and Vandenberg PA (1992) Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, a bacteriocin from pediococcus acidilactici PAC 1.0. Appl. Environ. Microbiol. 58: 2360–2367

    Google Scholar 

  • Mazzota A and Montville TJ (1997) Nisin induces changes in the membrane fatty acid composition of Listeria monocytogenes nisin-resistant strains at 10 °C and 30 °C. J. Appl. Microbiol. 82: 32–38

    Article  Google Scholar 

  • McAuliffe O, Ryan PM, Ross PR, Hill C, Breeuwer P and Abee T (1998) Lacticin 3147, a broad-spectrum bacteriocin which selectively dissipates the membrane potential. Appl. Environ. Microbiol. 64: 439–445

    Google Scholar 

  • Moll GN (1998a) unpublished data Moll GN, Ubbink-Kok T, Hauge HH, Nissen-Meyer J, Nes IF, Konings WN and Driessen AJM (1996a) Lactococcin G is a potassium ion-conducting, two component bacteriocin. J. Bacteriol. 178: 600–605

    CAS  Google Scholar 

  • Moll GN, Hauge HH, Nissen-Meyer J, Nes IF, Konings WN and Driessen MM (1998b) Mechanistic properties of the two component bacteriocin lactococcin G. J. Bacteriol. 180: 96–99

    PubMed  CAS  Google Scholar 

  • Moll GN, Roberts GCK, Konings WN and Driessen AJM (1996b) Mechanism of lantibiotic-induced pore-formation. Antonie van Leeuwenhoek 69: 185–191

    Article  PubMed  CAS  Google Scholar 

  • Moll GN, Konings WN and Driessen AJM (1998e) The lantibiotic nisin induces transmembrane movement of a fluorescent phospholipid. J. Bacteriol. 180: 6565–6570

    PubMed  CAS  Google Scholar 

  • Moll GN, Clark J, Chan WC, Bycroft BW, Roberts GCK, Konings WN and Driessen AJM (1997) Role of transmembrane pH gradient and membrane binding in nisin pore formation. J. Bacteriol 179: 135–140

    PubMed  CAS  Google Scholar 

  • Moll GN, van den Akker E, Hauge HH, Nes IF, Nissen-Meyer J, Konings WN and Driessen AJM (1999) Complementary and overlapping ion-selectivity of plantaricin EF and JK. Submitted

    Google Scholar 

  • Mgrtvedt CI, Nissen-Meyer J, Sletten K and Nes IF (1991) Purification and amino acid sequence of lactocin S, a bacteriocin produced by Lactobacillus sake L45. Appl. Environ. Microbial. 57: 1829–1834

    Google Scholar 

  • Mulders JWM, Boerrigter IJ, Rollema HS, Siezen RJ and de Vos WM (1991) Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. Eur. J. Biochem. 201: 581–584

    Google Scholar 

  • Navaratna MADB, Sahl H-G and Tagg JR (1998) Two-component anti-Staphylococcus aureus lantibiotic activity produced by Staphylococcus aureus C55. Appl. Environ. Microbiol. 64: 4803–4808

    Google Scholar 

  • Nes IF, Diep DB, Hâverstein LS, Brurberg MB, Eijsink V and Holo H (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie van Leeuwenhoek 70: 113–128

    Article  PubMed  CAS  Google Scholar 

  • Nissen-Meyer J, Hâverstein LS, Holgo H, Sletten K and Nes IF (1993) Association of the lactococcin A immunity factor with the cell membrane: purification and characterization of the immunity factor. J. General Microbiol. 139: 1503–1509

    Article  CAS  Google Scholar 

  • Nissen-Meyer J, Holo H, Haverstein LS, Sletten K and Nes IF (1992) A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J. Bacteriol. 174: 5686–5692

    Google Scholar 

  • Okereke A and Montville TJ (1992) Nisin dissipates the proton motive force of the obligate anaerobe Clostridium sporogenes PA 3679. Appl. Environ. Microbiol. 58: 2463–2467

    PubMed  CAS  Google Scholar 

  • Otto M, Peschel A and Götz F (1998) Producer self-protection against the lantibiotic epidermin by the ABC transporter ApiFEG of Staphylococcus epidermis Tä3298. FEMS Microbiol. Lett. 166: 203–211

    Google Scholar 

  • Piard J-C, Kuipers OP, Rollema HS, Desmazeaud MJ and de Vos WM (1993a) Structure, organization and expression of the Ict gene for lacticin 481, a novel lantibiotic produced by Lactococcus lactis. J. Biol. Chem. 268: 16361–16368

    Google Scholar 

  • Quadri LEN, Sailor M, Roy KL, Vederas JC and Stiles ME (1994) Chemical and genetic characterization of bacteriocins produced by Carnobacterium piscicola LV17B. J. Biol. Chem. 269: 12204–12211

    Google Scholar 

  • Ross KF, Ronson CW and Tagg JR (1993) Isolation and characterization of the lantibiotic salivaricin A and its structural gene salA from Streptococcus salivarius 20P3. Appl. Environ. Microbiol. 59: 2014–2021

    Google Scholar 

  • Sahl H-G, Jack RW and Bierbaum G (1995) Biosynthesis and biological activities of lantibiotics with unique post-translational modifications. Eur. J. Biochem. 230: 827–853

    Google Scholar 

  • Stephens SK, Floriano B, Cathcart DP, Bayley SA, Witt VF, Jiménez Dfaz R, Warner PJ and Ruiz-Barba JL (1998) Molecular Analysis of the locus responsible for the production of plantaricin S, a two-component bacteriocin produced by Lactobacillus plantarum LPCO10. Appl. Environ. Microbiol. 64: 1871–1877

    Google Scholar 

  • Stoffels G, Gudmundsdöttir and Abee T (1994) Membraneassociated proteins encoded by the nisin cluster may function as a receptor for the lantibiotic carnocin U149. Microbiology 140: 1443–1450

    CAS  Google Scholar 

  • Tagg JR, Dadjani AS and Wannamaker LW (1976) Bacteriocins of Gram-positive bacteria. Microbiol. Rev. 40: 722–756

    Google Scholar 

  • Tahara T, Oshimura M, Umezawa C and Kanatani K (1996) Isolation, partial characterisation, and mode of action of acidocin J1132, a two component bacteriocin produced by Lactobacillus acidophilus JCM 1132. Appl. Environ. Microbiol. 62: 892–897

    Google Scholar 

  • Tichaczek PS, Vogel RF and Hammes WP (1993) Cloning and sequencing of curA encoding curvacin A, the bacteriocin produced by Lactobacillus LTH1174. Arch. Microbiol. 160: 279–283

    Google Scholar 

  • Tichaczek PS, Vogel RF and Hammes WP (1994) Cloning and sequencing of sakP encoding sakacin P, the bacteriocin produced by Lactobacillus sake LTH673. Microbiology 140: 361–367

    Article  PubMed  CAS  Google Scholar 

  • Van Belkum M, Kok J, Venema G, Holo H, Nes IF, Konings WN and Abee T (1991) The bacteriocin lactococcin A specifically increases permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein mediated manner. J. Bacteriol. 173: 7934–7941

    PubMed  Google Scholar 

  • Van Belkum Mi, Kok J and Venema G (1992) Cloning, sequencing and expression in Escherichia coli of lcnB, a third bacteriocin determinant from the lactococcal bacteriocin plasmid p9B4–6. Appl. Environ. Microbiol. 58: 572–577

    Google Scholar 

  • Van de Kamp M, van den Hooven HW, Konings RNH, Bierbaum G, Sahl H-G, Kuipers OP, Siezen RJ, de Vos WM, Hilbers CW and van de Ven FJM (1995) Elucidation of the primary structure of the lantibiotic epilancin K7 from Staphylococcus epidermis K7. Cloning and characterization of the epilancin-K7-encoding gene and NMR analysis. Eur. J. Biochem. 230: 587–600

    Google Scholar 

  • Van de Kamp M, Horstink LM, van den Hooven HW, Konings RNH, Hilbers CW, Frey A, Sahl H-G, Metzger JW and van de Ven FJM (1995) Sequence analysis by NMR spectroscopy of the peptide lantibiotic epilancin K7 from Staphylococcus epidermis K7. Eur. J. Biochem. 227: 757–771

    Google Scholar 

  • Van der Meer JR, Polman J, Beerthuizen MM, Siezen RJ, Kuipers OP and de Vos WM (1993) Characterization of the Lactococcus lattis nisin A operon genes NisP, encoding a subtilin-like serine protease involved in precursor processing and nisR, encoding a regulatory protein involved in nisin biosynthesis. J. Bacteriol. 175: 2578–2588

    Google Scholar 

  • Van de Ven FJM, van den Hooven 11W, Konings RNH and Hilbers CW (1991) The spatial structure of nisin in aqueous solution. In: Jung G and Sahl H-G (Eds) Nisin and novel lantibiotics (pp 35–44 ). Escom publishers, Leiden, The Netherlands

    Google Scholar 

  • Van den Hooven (1995) Structure elucidation of the lantibiotic nisin in aqueous solution and in membrane-like environments. Ph.D. Thesis, University of Nijmegen, The Netherlands

    Google Scholar 

  • Van Kraaij C, Breukink E, Noordermeer MA, Demel R, Siezen RJ, Kuipers OP and de Kruijff B (1998) Pore formation by nisin involves translocation of its C-terminal part across the membrane. Biochemistry 37: 16033–16040

    Article  PubMed  Google Scholar 

  • Van Kraaij C, Breukink E, Rollema HS, Siezen R, Demel, de Kruijff B and Kuipers OP (1997) Influence of charge differences in the C-terminal part of nisin on antimicrobial activity and signalling capacity. Eur. J. Biochem. 247: 114–120

    Google Scholar 

  • Venema K, Abee T, Haandrikman AJ, Leenhouts KJ, Kok J, Konings WN and Venema G (1993) Mode of action of lactococcin B, a thiol-activated bacteriocin from Lactococcus lactis. Appl. Environ. Microbiol. 59: 1041–1048

    Google Scholar 

  • Venema K, Dost MHR, Venema G and Kok J (1996) Mutational analysis and chemical modification of Cys 24 of lactococcin B, a bacteriocin produced by Lactococcus lactis. Microbiology 142: 2825–2830

    Article  PubMed  CAS  Google Scholar 

  • Venema K, Haverkort RE, Abee T, Haandrikman AJ, Leenhouts KJ, de Ley L, Venema G and Kok J (1994) Mode of action of LciA, the lactococcin A immunity protein. Mol. Microbiol. 14: 521–532

    Google Scholar 

  • Verheul, A, Russell NJ, Van ‘t Hof R, Rombouts FM and Abee T (1997) Modifications of membrane phospholipid composition in nisin-resistant Listeria monocytogenes Scott A. Appl. Environ. Microbiol. 63: 3451–3457

    Google Scholar 

  • Wiedeman I, Benz R and Sahl H-G (1998) Pore formation by the peptide antibiotic nisin in the presence of the bacterial peptidoglycan lipid II: a black lipid membrane study. Third International Workshop on Lantibiotics, Blaubeuren, p 72

    Google Scholar 

  • Winkowsky K, Bruno MEC and Montville TJ (1994) Correlation of bioenergetic parameters with cell death in Listeria monocytogenes cells exposed to nisin. Appl. Environ. Microbiol. 60: 4186–4188

    Google Scholar 

  • Winkowsky KD, Ludescher RD and Montville TJ (1996) Physicochemical characterization of the nisin-membrane interaction with liposomes derived from Listeria monocytogenes. Appl. Environ. Microbiol. 62: 323–327

    Google Scholar 

  • Worobo RW, van Belkum MJ, Sailer M, Roy KL, Vederas JC and Stiles ME (1995) A signal peptide secretion-dependent bacteriocin from Carnobacterium divergens. J. Bacteriol. 177: 31433149

    Google Scholar 

  • Worobo RW, Henkel T, Sailer M, Roy KL, Vederas JC and Stiles ME (1994) Characteristics and genetic determinant of a hydrophobic peptide bacteriocin, carnobacteriocin A, produced by Carnobacterium piscicola LV17A. Microbiology 140: 517–526

    Google Scholar 

  • Zajdel JK, Ceglowsky P and Dobrzanski WT (1985) Mechanism of action of lactostrepcin 5, a bacteriocin produced by Streptococcus cremoris. Appl. Environ. Microbiol. 49: 969–974

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold J. M. Driessen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Moll, G.N., Konings, W.N., Driessen, A.J.M. (1999). Bacteriocins: mechanism of membrane insertion and pore formation. In: Konings, W.N., Kuipers, O.P., In ’t Veld, J.H.J.H. (eds) Lactic Acid Bacteria: Genetics, Metabolism and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2027-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2027-4_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5312-1

  • Online ISBN: 978-94-017-2027-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics