Skip to main content

Part of the book series: Mathematics and Its Applications ((MASS,volume 84))

Abstract

We start with an example. Let Γ be a graph and G be a subgroup of its automorphism group. The group G is said to act s-transitively on Γ if it acts transitively on the set of paths of length s in Γ. Below, for a 1-transitive group G, s will be the largest integer such that G acts s-transitively. In [Tut] the following theorem was proved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.L. Biggs, Presentations for cubic graphs, pp. 57–63. In Computational Group Theory, ed. M.D. Atkinson. Acad. Press, 1984.

    Google Scholar 

  2. M. Conder, A new 5-arc-transitive cubic graph, J. of Graph Theory, 11 (1987), 303–307.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Delgado, D.M. Goldschmidt & B. Stellmacher, Groups and Graphs: New Results and Methods. Birkhauser Verlag, Basel, 1985.

    MATH  Google Scholar 

  4. A. Delgado & R. Weiss, On certain coverings of generalized polygons. Bull. London Math. Soc. 21 (1989), 209 – 234.

    Article  MathSciNet  Google Scholar 

  5. D.Z. Djokovic, Automorphisms of regular graphs and finite simple group amalgams, pp. 95–118. In Algebraic Methods in Graph Theory, vol. 1, 1981, Amsterdam: North-Holland.

    Google Scholar 

  6. D.Z. Djokovic & G.L. Miller, Regular groups of automorphisms of cubic graphs, J. Combin. Theory B29, (1980), 1955 – 236.

    MathSciNet  Google Scholar 

  7. A. Gardiner, Arc transitivity in graphs, Quart. J. Math. Oxford, (2) 24 (1973), 399 – 407.

    Article  MATH  Google Scholar 

  8. D. Goldschmidt, Automorphisms of trivalent graphs. Ann. Math., 111 (1980), 377 – 406.

    Google Scholar 

  9. A.A. Ivanov, Graphs of girth 6 and a characterization of the odd graphs, pp. 92–107. In problems in Group Theory and Homological Algebra. Yaroslavl, 1986. [In Russian]

    Google Scholar 

  10. A.A. Ivanov, Distance-transitive graphs and their classification. [In this volume]

    Google Scholar 

  11. A.A. Ivanov, S.V. Tsaranov & S.V. Shpectorov, Maximal subgroups of the O’Nan-Sims sporadic simple group and its automorphism group, Soviet Math. Dokl. 34 (1987), 534 – 537.

    MATH  Google Scholar 

  12. A.G. Kurosh, Group Theory. 3rd ed. Moscow, Nauka, 1967. [In Russian]

    Google Scholar 

  13. M. Perkel, Bounding the valency of polygonal graph with odd girth. Canad. J. Math. 31 (1979).

    Google Scholar 

  14. M. Perkel, A characterization of PSL(2, 31) and its geometry. Canad. J. Math. 32 (1980), 155 – 164.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Perkel, A characterization of J 1 in terms of its geometry, Geom. Dedic. 9 (1980), 289 – 298.

    MathSciNet  Google Scholar 

  16. C.E. Praeger, C.E. Symmetric graphs and a characterization of the odd graphs. Lecture Notes Math. 829 (1980), 211 – 219.

    Article  Google Scholar 

  17. C.E. Praeger, Primitive permutation groups and a characterization of the odd graphs. J. Combin. Theory (B), 31 (1981), 117 – 142.

    Article  Google Scholar 

  18. M.A. Ronan, On the second homotopy group of certain simplicial complexes and some combinatorial applications, Quart. J. Math. Oxford (2), 32 (1981), 225 – 233.

    Article  Google Scholar 

  19. J.-P. Serre, Arbres, Amalgams, SL 2, Asterisque 46, Soc. Math. de France, 1977.

    Google Scholar 

  20. G. Stroth & R. Weiss, Modified Steinberg relations for the group J 4, Geom. Dedic., 25 (1988), 513 – 525.

    MathSciNet  MATH  Google Scholar 

  21. P. Terwilliger, Distance-regular graphs and (s, c, a, k)-graphs, J. Combin. Theory (B), 34 (1983), 151–164.

    Google Scholar 

  22. J.G. Thompson, Bounds for orders of maximal subgroups, J. Algebra, 14 (1970), 135 – 138.

    Article  MathSciNet  Google Scholar 

  23. V.I. Trofimov, Graphs with projective suborbits, Izvestiya AN SSSR, Ser. Mat. 55 (1991), 890–916. [In Russian]

    Google Scholar 

  24. V.I. Trofimov, Vertex stabilizers of graphs with projective suborbits, Doklady AN SSSR, 315 (1991), 544–546. [In Russian]

    Google Scholar 

  25. W.T. Tutte, A family of cubical graphs. Proc. Cambridge Phyl. Soc., 43 (1947), 459 – 474.

    MathSciNet  MATH  Google Scholar 

  26. R. Weiss, Elations of graphs,Acta Math. Acad. Sci. Hungar. 34 (1979), 101–103.

    Google Scholar 

  27. R. Weiss, s-transitive graphs, pp. 827–847. In Algebraic Methods in Graph Theory, vol. 2, 1981. Amsterdam: North-Holland.

    Google Scholar 

  28. R. Weiss, The nonexistence of 8-transitive graphs, Combinatorica, 1 (1981), 309 – 311.

    Article  MathSciNet  Google Scholar 

  29. R. Weiss, Groups with a (B,N)-pair and locally transitive graphs. Nagoya Math. J., 74 (1982), 1 – 21.

    Google Scholar 

  30. R. Weiss, Symmetric graphs with projective subconstituents, Proc. Amer. Soc., 72 (1978), 213 – 217.

    Google Scholar 

  31. R. Weiss, A characterization and another construction of Janko’s group J3, Trans. Amer. Math. Soc., 298 (1986), 621–633.

    MathSciNet  MATH  Google Scholar 

  32. R. Weiss, A characterization of the group M 12, Algebra Groups Geom. 2 (1985), 555–563.

    MATH  Google Scholar 

  33. H. Wielandt, Subnormal subgroups and permutation groups, Lecture Notes, The Ohio State Univ., Columbus, 1971.

    Google Scholar 

  34. Will R.A. Wilson, The maximal subgroups of the O’Nan group, J. Algebra, 97 (1985), 467 – 473.

    Article  MathSciNet  MATH  Google Scholar 

  35. S. Yoshiara, The maximal subgroups of the sporadic simple group of O’Nan, J. Fac. Sci. Univ. Tokyo, Sect. 1A, Math., 32 (1985), 105 – 141.

    MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ivanov, A.A., Shpectorov, S.V. (1994). Applications of Group Amalgams to Algebraic Graph Theory. In: Faradžev, I.A., Ivanov, A.A., Klin, M.H., Woldar, A.J. (eds) Investigations in Algebraic Theory of Combinatorial Objects. Mathematics and Its Applications, vol 84. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1972-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1972-8_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4195-1

  • Online ISBN: 978-94-017-1972-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics