Advertisement

Scales of disturbance and their role in plankton ecology

  • Colin S. Reynolds
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 81)

Abstract

The role of hydraulic and hydrographic disturbances in delaying, arresting or diverting successional sequences from achieving stable, climactic equilibria is discussed by reference to case studies. The critical time scale is expressed in terms of planktonic reproductive generation times. Environmental constancy persisting over some 12–16 generations may permit a climactic condition to be achieved. An Intermediate Disturbance, if sustained, can establish a new successional sequence or, if not, can lead to a reversion to a sequence similar to the predisturbance succession. At intervals of ~ 1 generation time, species are selected according to their ability to accommodate disturbances at the physiological level. Highly disturbed environments are considered to be likely to maintain ‘plagioclimactic’ associations.

Key words

succession phytoplankton equilibrium intermediate disturbance diversity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allanson, B. R. and R. C. Hart, 1979. Limnology of P. K. le Roux Dam. Reports, Rhodes University Institute for Freshwater Studies 11: 1–3.Google Scholar
  2. Berger, C., 1975. Occurrence of Oscillatoria agardhii Gomont in some shallow eutrophic lakes. Verh. int. Ver. Limnol. 19: 2687–2697.Google Scholar
  3. Connell, J. H., 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302–1310.PubMedCrossRefGoogle Scholar
  4. Ferguson, A. J. D. and D. M. Harper, 1982. Rutland Water phytoplankton: the development of an asset or a nuisance? In D. M. Harper and J. A. Bullock (eds), Rutland Water - Decade of change. Developments in Hydrobiology 8. Dr W. Junk Publishers, The Hague: 117–133. Reprinted from Hydrobiologia 88.Google Scholar
  5. Ganf, G. G., 1974. Diurnal mixing and the vertical distribution of phytoplankton in a shallow equatorial lake ( Lake George, Uganda). J. Ecol. 62: 611–629.Google Scholar
  6. Gaedeke, A and U. Sommer, 1986. The influence of the frequency of periodic disturbances on the maintenance of phytoplankton diversity. Oecologia 71: 98–102.CrossRefGoogle Scholar
  7. Gibson, C. E. and A. G. Fitzsimmons, 1982. Periodicity and morphology of planktonic blue-green algae in an unstratified lake ( Lough Neagh, Northern Ireland). Int. Revue ges. Hydrobiol. 62: 459–471.Google Scholar
  8. Gibson, C. E., R. B. Wood, E. L. Dickson and D. M. Jensen, 1971. The succession of phytoplankton in L. Neagh, 19681970. Mitt. int. Ver. Limnol. 19: 146–160.Google Scholar
  9. Grime, P., 1979. Plant strategies and vegetation processes. Wiley-Intescience, Chichester.Google Scholar
  10. Grygierek, E. and B. Wasilewska, 1979. Regulation of fishpond biocoenoses. Special Publications of the European Mari-culture Society 4: 317–333.Google Scholar
  11. Haffner, G. D., G. P. Harris and M. K. Jarai, 1980. Physical variability and phytoplankton communities. III. Vertical structure in phytoplankton populations. Arch. Hydrobiol. 89: 363–381.Google Scholar
  12. Hamilton, S. K. and W. M. Lewis, 1990. Basin morphology in relation to chemical and ecological characteristics of lakes on the Orinoco River floodplain, Venezuela. Arch. Hydrobiol. 119: 393–425.Google Scholar
  13. Hardin, G., 1960. The competitive exclusion hypothesis. Science. 131: 1292–1297.PubMedCrossRefGoogle Scholar
  14. Holzmann, R., 1993. Seasonal fluctuations in the diversity and compositional stability of phytoplankton communities in small lakes in upper Bavaria. In J. Padisâk, C. S. Reynolds and U. Sommer (eds), Intermediate Disturbance Hypothesis in Phytoplankton Ecology. Developments in Hydrobiology 81. Kluwer Academic Publishers, Dordrecht: 101–109. Reprinted from Hydrobiologia 249.Google Scholar
  15. Hutchinson, G. E., 1961. The paradox of the plankton. Am. Nat. 95: 137–147.Google Scholar
  16. Ibelings, B. W., L. R. Mur and A. E. Walsby, 1991. Diurnal changes in buoyancy and vertical distribution in populations of Microcystis in two shallow lakes. J. Plankton Res. 13: 419–436.CrossRefGoogle Scholar
  17. Joint, I. R. and A. J. Pomroy, 1981. Primary production in a turbid estuary. Estuar. coast. mar. Sci. 13: 303–316.Google Scholar
  18. Juhâsz-Nagy, P., 1993. Notes on compositional diversity. In J. Padisâk, C. S. Reynolds and U. Sommer (eds), Intermediate Disturbance Hypothesis in Phytoplankton Ecology. Developments in Hydrobiology 81. Kluwer Academic Publishers, Dordrecht: 173–182. Reprinted from Hydrobiologia 249.Google Scholar
  19. Kilham, P. and S. S. Kilham, 1980. The evolutionary ecology of phytoplankton. In I. Morris (ed.), The physiological ecology of phytoplankton. Blackwell Scientific Publications, Oxford: 571–597.Google Scholar
  20. Kimmel, B. L. and O. T. Lind, 1972. Factors affecting phytoplankton production in a eutrophic reservoir. Arch. Hydrobiol. 71: 124–141.Google Scholar
  21. Kotinek, V., J. Fott, J. Fuksa, J. Lellâk and M. Prazâkovâ, 1987. Carp ponds of Central Europe. In R. G. Michael (ed.), Managed Aquatic Ecosystems. Elsevier, Amsterdam: 29–62.Google Scholar
  22. Lewis, W. M., 1978. Dynamics and succession of the phytoplankton in a tropical lake: Lake Lanao, Philippines. J. Ecol. 66: 849–880.Google Scholar
  23. Lindholm, T., 1982. Dynamics of hydrography and primary production in three stratified coastal lakes on ‘Aland (S. W. Finland ). Acta Academia Aboensis B 42: 1–75.Google Scholar
  24. Lund, J. W. G., 1949. Studies on Asterionella. I. The origin and nature of the cells producing seasonal maxima. J. Ecol. 37: 389–419.Google Scholar
  25. Lund, J. W. G. and C. S. Reynolds, 1982. The development and operation of large limnetic enclosures in Blelham Tarn, English Lake District and their contribution to phytoplankton ecology. In F. E. Round and D. J. Chapman (eds), Progress in Phycological Research Vol. I. Elsevier, Amsterdam: 1–65.Google Scholar
  26. Margalef, R., 1961. Communication of structure in planktonic populations. Limnol. Oceanogr. 6: 124–128.Google Scholar
  27. Odum, E. P., 1969. The strategy of ecosystem development. Science 164: 262–270.PubMedCrossRefGoogle Scholar
  28. Pennington, W., 1969. The history of the British vegetation. English Universities Press, London.Google Scholar
  29. Petersen, R., 1975. The paradox of the plankton: an equilibrium hypothesis. Am. Nat. 109: 35–49.Google Scholar
  30. Pickett, S. T. A., J. Kolasa, J. J. Armesto and S. L. Collins, 1989. The ecological concept of disturbance and its expression at various hierarchical levels. Oikos 54: 129–136.CrossRefGoogle Scholar
  31. Pollingher, U., 1988. Freshwater armoured dinoflagellates: growth, reproduction strategies and population dynamics. In C. D. Sandgren (ed.), Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, New York: 134–174.Google Scholar
  32. Price, P. W., 1984. Alternative paradigms in community ecology. In P. W. Price, C. N. Slobodchikoff and W. S. Gaud (eds), A new ecology: novel approaches to interactive systems. Wiley-Interscience, New York: 353–383.Google Scholar
  33. Priscu, J. C., W. F. Vincent and C. Howard-Williams, 1989. Inorganic nitrogen uptake and regeneration in perennially ice-covered Lakes Fryxell and Vanda, Antarctica. J. Plankton Res. 11: 335–351.Google Scholar
  34. Reynolds, C. S., 1976. The ecology of phytoplankton in Shropshire and Cheshire meres. Report Freshwater Biological Association 44: 36–45.Google Scholar
  35. Reynolds, C. S., 1980. Phytoplankton assemblages and their periodicity in stratifying lake systems. Holarct. Ecol. 3: 141–159.Google Scholar
  36. Reynolds, C. S., 1984. Phytoplankton periodicity: the interaction of form, function and environmental variability. Freshwater. Biol. 14: 111–142.Google Scholar
  37. Reynolds, C. S., 1987a. Community organization in the freshwater phytoplankton. In J. H. R. Gee and P. S. Giller (eds), The organization of communities, past and present. Blackwell Scientific Publications, Oxford: 297–325.Google Scholar
  38. Reynolds, C. S., 1987b. Cyanobacterial Water Blooms. In J. Calow (ed.), Advances in botanical research, Vol. 13. Academic Press, London: 67–143.Google Scholar
  39. Reynolds, C. S., 1987c. The response of phytoplankton communities to changing lake environments. Schweiz. Z. Hydrol. 49: 220–236.Google Scholar
  40. Reynolds, C. S., 1988a. The theory of ecological succession applied to the freshwater phytoplankton. Verh. int. Ver. Limnol 23: 683–691.Google Scholar
  41. Reynolds, C. S., 1988b. Functional morphology and the adaptive strategies of freshwater phytoplankton. In C. D. Sandgren (ed.), Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, New York: 388–433.Google Scholar
  42. Reynolds, C. S., 1988c. Potamoplankton: paradigms, paradoxes, prognoses. In F. E. Round (ed.), Algae and the aquatic environment. Biopress, Bristol: 285–311.Google Scholar
  43. Reynolds, C. S., 1989. Relationships among the biological properties, distribution and regulation of production by planktonic Cyanobacteria. Toxicity Assessment 4: 229255.Google Scholar
  44. Reynolds, C. S., 1991. Lake Communities: an approach to their management for conservation. In I. F. Spellerberg, M. G. Morris and F. B. Goldsmith (eds), The scientific management of temperature communities for conservation. Blackwell Scientific Publications, Oxford: 199–225.Google Scholar
  45. Reynolds, C. S. and J. W. G. Lund, 1988. The phytoplankton of an enriched, soft-water lake subject to intermittent hydraulic flushing ( Grasmere, English Lake District). Freshwat. Biol. 19: 379–404.Google Scholar
  46. Reynolds, C. S., V. Montecino, M.-E. Graf and S. Cabrera, 1986. Short-term dynamics of a Melosira population in the plankton of an impoundment in central Chile. J. Plankton Res. 8: 715–740.CrossRefGoogle Scholar
  47. Reynolds, C. S., J. G. Tundisi and K. Hino, 1983. Observations on a metalimnetic Lyngbya population in a stably stratified tropical lake ( Lagoa Carioca, Eastern Brasil). Arch. Hydrobiol. 97: 7–17.Google Scholar
  48. Reynolds, C. S., S. W. Wiseman and M. J. O. Clarke, 1984. Growth-and loss-rate responses of phytoplankton to intermittent artificial mixing and their potential application to the control of planktonic algal biomass. J. appl. Ecol. 21: 11–39.Google Scholar
  49. Richerson, P., R. Armstrong and C. R. Goldman, 1970. Contemporaneous disequilibrium, a new hypothesis to explain the paradox of the plankton. Proc natn. Acad. Sci. USA 67: 1710–1714.Google Scholar
  50. Round, F. E., 1971. The growth and succession of algal populations in freshwaters. Mitt. int. Ver. Limnol. 19: 70–99. Smayda, T. J. 1980. Phytoplankton species succession. In I. Morris (ed.), The physiological ecology of phytoplankton. Blackwell Scientific Publications, Oxford: 493–570.Google Scholar
  51. Sommer, U., 1985. Comparisons between steady state and non-steady state competition: experiments with natural phytoplankton. Limnol. Oceanogr. 30: 335–346.Google Scholar
  52. Sommer, U., 1986. The periodicity of phytoplankton in Lake Constance (Bodensee) in comparison to other deep lakes of Central Europe. In M. Munawar and J. F. Tailing (eds), Seasonality of Freshwater Phytoplankton - a Global Perspective. Developments in Hydrobiology 33. Dr W. Junk Publishers, Dordrecht: 1–7. Reprinted from Hydrobiologia 138.Google Scholar
  53. Sommer, U., 1989. The role of competition for resources in phytoplankton succession. In U. Sommer (ed.), Plankton ecology. Springer-Verlag, Berlin: 57–106.CrossRefGoogle Scholar
  54. Sommer, U., 1993. Disturbance-diversity relationships in two lakes of similar nutrient chemistry but contrasting disturbance regimes. Hydrobiologia 249: 59–65.CrossRefGoogle Scholar
  55. Sommer, U., Z. M. Gliwicz, W. Lampert and A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in freshwaters. Arch. Hydrobiol. 106: 433–471.Google Scholar
  56. Tanis, J. H., 1973. The terrestrialization of lake basins in north Cheshire, with special reference to the development of a ‘Schwingmoor’ structure. J. Ecol. 61: 537–567.CrossRefGoogle Scholar
  57. Tansley, A. G., 1939. The British Isles and their vegetation. Cambridge University Press, Cambridge.Google Scholar
  58. Tilman, D., 1982. Resource competition and community structure. Princeton University Press, Princeton.Google Scholar
  59. Tilman, D., S. S. Kilham and P. Kilham, 1982. Phytoplankton community ecology: the role of limiting nutrients. Ann. Rev. Ecol. Syst. 13: 349–372.Google Scholar
  60. Trimbee, A. M. and G. P. Harris, 1983. Use of time-series analysis to demonstrate advection rates of different variables in a small lake. J. Plankton Res. 5: 819–833.CrossRefGoogle Scholar
  61. Tundisi, J. G., 1980. Ecol6gia aquâtica no Brasil: problemas e perspectivas. Interciencia 5: 373–379.Google Scholar
  62. Uhlmann, D., 1971. Influence of dilution, sinking and grazing rate on phytoplankton populations of hyperfertilized ponds and microecosystems. Mitt. int. Ver. Limnol 19: 100–124.Google Scholar
  63. Vicente, E. and M. R. Miracle, 1988. Physicochemical and microbial stratification in a meromictic karstic lake of Spain. Verh. int. Ver. Limnol 23: 522–529.Google Scholar
  64. Vincent, W. F., 1981. Production strategies in Antarctic inland waters: phytoplankton eco-physiology in a permanently ice-covered lake. Ecology 62: 1215–1224.CrossRefGoogle Scholar
  65. Vincent, W. F., P. J. Neale and P. J. Richerson, 1984. Photo-inhibition: algal responses to bright sunlight during diel stratification and mixing in a tropical alpine lake. J. Phycol. 20: 201–211.CrossRefGoogle Scholar
  66. Vincent, W. F. and C. L. Vincent, 1982. Factors controlling phytoplankton production in Lake Vanda (77° S). Can J. Fish. aquat. Sci. 39: 1602–1609.Google Scholar
  67. Vollenweider, R. A., 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem. Ist. ital. Idrobiol. 33: 53–83.Google Scholar
  68. Whitehead, P. G. and G. M. Hornberger, 1984. Modelling algal behaviour in the River Thames. Wat. Res. 18: 945–953.Google Scholar
  69. Zohary, T. and R. D. Robarts, 1989. Diurnal mixed layers and the long-term dominance of Microcystis aeruginosa. J. Plankton Res. 11: 25–48.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Colin S. Reynolds
    • 1
  1. 1.Windermere LaboratoryFreshwater Biological Association, NERC Institute of Freshwater EcologyAmblesideUK

Personalised recommendations