Advertisement

Piezoelectric Laminates

Theory and Experiments for Distributed Sensors and Actuators
  • C.-K. Lee
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 13)

Abstract

It has been more than a hundred years since the piezoelectric effect was first discovered by the brothers Curie in 1880 (Cady, 1964). Nowadays, more than a hundred ferroelectric materials are known. Conventional ferroelectric polycrystals are ceramics or natural crystals, which are crystalline and brittle. The sensors or actuators developed from these types of materials are point sensors/actuators. A point sensor/actuator, such as an accelerometer or a piezoelectric transducer, will react or induce force, displacement or acceleration, at a point in a structure. The advantages of applying point sensors/actuators is that no knowledge about the system being studied needs to be known beforehand. On the other hand, this is also a drawback for point sensors/actuators since information about the system known a priori cannot be integrated into the sensor/actuator design process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, E., Moore, D., Fanson, J. and Ealey, M., 1990, “Development of an Active Member Using Piezoelectric and Electrostrictive Actuation for Control of Precision Structures,” Proc. A1AA/ASME/ASCE/AHS/ASC 31st Structures, Structural Dynamics, and Materials Conf, pp. 2221–2233.Google Scholar
  2. ANSI/IEEE Standard 176,1987, Piezoelectricity.Google Scholar
  3. Arbel, A., and Gupta, N., 1980, “Robust Colocated Control for Large Flexible Structures,” Joint Auto. Contr. Conf.Google Scholar
  4. Aubrum, H. N., 1978, “Theory of the Control of Structures by Low Authority Controllers,” AIAA Conf. on Large Space Platforms, AIAA Paper No. 78–1689.Google Scholar
  5. Ashton J. E., Halpin, J. C., and Petit, P. H., 1969, “Properties of Orthotropic Lamina,” in Primer on Composite Materials: Analysis, ( Progress in Material Science Series ), Technomic, Conn.Google Scholar
  6. Bailey, T. and Hubbard, J. E., 1985, “Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam,” J. Guid. and Contr., Vol. 8, No. 5, pp. 605–611.CrossRefzbMATHGoogle Scholar
  7. Balas, M. J., 1978a (July), “Active Control of Flexible Systems,” J. Optim. Theo. Appl., Vol. 25, No. 3, pp. 415–436.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Balas, M. J., 1978b (August), “Feedback Control of Flexible Systems,” IEEE Trans. Auto. Contr., Vol. 23, No. 4, pp. 673–679.CrossRefzbMATHGoogle Scholar
  9. Balas, M. J., 1979, “Direct Velocity Feedback Control of Large Space Structures,” J. Guid. and Contr., Vol. 2, pp. 252–253.CrossRefGoogle Scholar
  10. Bar-Kana, I., Kaufman, H. and Balas, M., 1983, “Model Reference Adaptive Control of Large Structural Systems,” J. Guid. and Contr., Vol. 6, No. 2, pp. 112–118.CrossRefzbMATHGoogle Scholar
  11. Bergaman, J. G., McFee, J. H. and Crane, G. R., 1971, “Pyroelectricity and Optical Second Harmonic Generation in Polyvinylidene Fluoride Films,” Appl. Phys. Lett., Vol. 18 No. 5, pp. 203–205.ADSCrossRefGoogle Scholar
  12. Blevins, R. D., 1985, Formulas for Natural Frequency and Mode Shape, Robert E. Krieger, Florida.Google Scholar
  13. Bloomfield, P. E., and Marcus, M. A., 1988, “Procuction of Ferroelectric Polymer Films,” The Applications of Ferroelectric Polymers, Wang, T. T., Herbert, J. M., and Glass, A. M., ed., Chapman and Hall, New York, Chap. 3.Google Scholar
  14. Bode, H. W., 1945, Network Analysis and Feedback Amplifier Design, D. Van Nostrand, New York.Google Scholar
  15. Bracewell, R. N., 1978, The Fourier Transform and Its Application, 2nd ed., McGraw-Hill, New York.Google Scholar
  16. Burke, S., and Hubbard, J. E., 1986, “Distributed Parameter Control Design for Vibrating Beams Using Generalized Functions,” IFAC Symposium on Control of Distributed Parameter Systems.Google Scholar
  17. Burke, S. E., and Hubbard, J., 1987 (August), “Active Vibration Control of a Simply Supported Beam Using a Spatially Distributed Actuator,” IEEE Contr. Syst. Mtg., pp. 25–30.Google Scholar
  18. Cady, W.G., 1964, Piezoelectricity, 2 Vols., Dover, New York.Google Scholar
  19. Canavin, J. R., 1978, “The Control of Spacecraft Vibration Using Multi-variable Output Feedback,” AIAA Guid. Contr. Conf., Paper No. 78–1419.Google Scholar
  20. Collins, S. A., Miller, D. W., and von Flotow, A. H., 1990a, “Sensors for Structural Control Applications Using Piezoelectric Polymer Film,” Space Engineering Report No. 12–90, Mass. Inst. Tech., Mass.Google Scholar
  21. Collins, S. A., Padilla, C. E., Schmitz, E., Notestine, R. J., Ramey, M. and von Flotow, A. H., 1990b, “Design, Manufacture, and Application to Space Robotics of Distributed Piezoelectric Film Sensors,” Proc. AIAA/ASME/ASCE/AHS/ACS 31st Structures, Structural Dynamics, and Materials Conference, pp. 1899–1906.Google Scholar
  22. Collins, S. A., Miller, D. W., and von Flotow, A. H., 1991 (April), “Piezopolymer Spatial Filters for Active Vibration Control,” Recent Advances in Active Control of Sound and Vibration, Rogers, C. A. and Fuller, C. R., ed., Technomic, Lancaster, Penn., pp. 219–234.Google Scholar
  23. Connally, J. A. and Hubbard, J. E., Jr., 1988, “Low Authority Control of a Composite Cantilever Beam in Two Dimensions,” Proc. 1989 American Contr. Conf., pp. 1903–1908.Google Scholar
  24. Crawley, E. F. and de Luis, J., 1985, “Use of Piezo-Ceramics as Distributed Actuators in Large Space Structures,” Proc. of AIAA/ASME/ASCE/AHS 26th Structures, Structural Dynamics and Materials Conf, pp. 126–133.Google Scholar
  25. Crawley, E. F. and de Luis, J., 1986, “Experimental Verification of Distributed Piezoelectric Actuators for Use in Precision Space Structures,” Proc. of AIAA/ASME/ASCE/AHS 27th Structures, Structural Dynamics and Materials Conf., pp. 116–124.Google Scholar
  26. Cross, L. E., 1989, “Piezoelectric and Electrostrictive Sensors adn Actuators for Adaptive Structures and Smart Materials,” Proc. AME 110th Annual Mtg.Google Scholar
  27. Cudney, H., Inman, D. and Oshman, Y., 1990, “Distributed Structural Control Using Multilayered Piezoelectric Actuators,” Proc. AIAA/ASME/ASCE/AHS/ASC 31st Structures, Structural Dynamics, and materials Conf., pp. 2257–2264.Google Scholar
  28. Daily, J. W., and Riley, W. R. Riley, 1965,“Experimental Stress Analysis,” McGraw-Hill, New York.Google Scholar
  29. de Luis, J., Crawley, E. F. and Hall, S. R., 1989, “Design and Implementation of Optimal Controllers for Intelligent Structures Using Infinite Order Structural Models,” Space Systems Laboratory Report No. 3–89, Mass. Inst. Tech., Mass.Google Scholar
  30. Dong S. B., and Nelson, R. B., 1972, “On Natural Vibrations and Waves in Laminated Orthotropic Plates,” J. Appl. Mech., Vol. 39, pp. 739–745.ADSCrossRefGoogle Scholar
  31. Dunkin J. W., and Eringen, A. C., 1961, Tech. Report,No. 18,Office of Naval Res., Contract Nonr-1100(02).Google Scholar
  32. Fanson, J. L. and Caughey, T. K., 1987, “Positive Position Feedback Control for Large Space Structures,” Proc. of AIAA/ASME/ASCE/AHS 28th Structures, Structural Dynamics and Materials Conf., pp. 588–598.Google Scholar
  33. Fukada, E., and Sakurai, T., 1971, “Piezoelectricity in Polarized Poly(vinylidene Fluoride) Films,” Polymer J., Vol. 5, No. 2, pp. 656–662.CrossRefGoogle Scholar
  34. Furukawa, T., and Wang, T. T., 1988,“Measurement and Properties of Ferroelectric Polymers,” The Applications of Ferroelectric Polymers,Wang, T. T., Herbert, J. M., and Glass, A. M., ed., Chapman and Hall, New York, Chap. 5.Google Scholar
  35. Greenberg, M. D., 1978, Foundations of Applied Mathematics, Prentice-Hall, New Jersey.zbMATHGoogle Scholar
  36. Elliott, D. G., ed., 1987, Handbook of Digital Signal Processing Engineering Applications, Academic Press, California.zbMATHGoogle Scholar
  37. Hanagud, S., Obal, M. W., and Meyyappa, M., 1985, “Electronic Damping Techniques and Active Vibration Control,” Proc. of AIAA/ASME/ASCE/AHS 26th Structures, Structural Dynamics and Materials, AIAA Paper No. 85–0752.Google Scholar
  38. Hanagud, S., Obal, M. W., and Calise, A. J., 1986, “Optimal Vibration Control by Use of Piezoceramic Sensors and Actuators,” Proc. of AIAA/ASME/ASCE/AHS 27th Structures, Structural Dynamics and Materials, pp. 177–185.Google Scholar
  39. Henderson, T. C. and Canavin, J. R., 1978, “Damping Augmentation for Large Space Structures,” Proc. of the 9th AIAA/ASME Structures and Materials Conf., AIAA Paper No. 78–490.Google Scholar
  40. Horowitz, H. and W. Hill, 1980, The Art of Electronics, Cambridge Univ. Press, New York.Google Scholar
  41. Hubbard, J. E., Jr., 1988, “Distributed Transducers for Smart Structural Components,” Proc. 6th Int. Modal Analysis Con f, pp. 856–862.Google Scholar
  42. IEEE Standard 179, 1961, Measurement of Piezoelectric Ceramics.Google Scholar
  43. Jeng, J. H., Varadan, V. V., and Varadan, V. K., 1990, “Design and Analysis of the Performance of PZT/Polymer Composite Transducers,” Piezoelectric and Electrostrictive Materials for Transducer Applications, Annual Report ONR Contract N00014–89-J-1689, Appendix 38.Google Scholar
  44. Kawai, H. “The Piezoelectricity of Poly(vinylidene fluoride),”, 1979, Jpn. J. Appl. Phys., Vol. 8, pp. 975–976.Google Scholar
  45. Kepler, R. G., 1978, “Piezoelectricity, Pyroelectricity and Ferroelectricity in Organic Materials (Review),” Ann. Rev. Phys. Chem., Vol. 29., pp. 497–518.Google Scholar
  46. Kepler, R. G., and Anderson, R. A., 1978, “Ferroelectricity in Polyvinylidene Fluoride,” J. Appl. Phys., Vol. 49, pp. 1232–1235.ADSCrossRefGoogle Scholar
  47. Kepler, R. G., and Anderson, R. A., 1978, “Piezoelectricity and Pyroelectricity in Polyvinylidene Fluoride,” J. Appl. Phys., Vol. 49, pp. 4491–4495.ADSGoogle Scholar
  48. KYNAR Piezo Film Technical Manual,1983, “Properties of KYNAR Piezo Film,” Pennwalt Corp., Valley Forge, Pennsylvania.Google Scholar
  49. KYNAR Piezo Film Technical Manual,1987, Pennwalt Corp., Valley Forge, Pennsylvania.Google Scholar
  50. Latour, M., and Murphy, P. V., 1981, “Application of PVF2 Transducer as Piezoelectric Vibrators for Marine Fouling Prevention,” Ferroelectrics Vol. 32, pp. 33–37.CrossRefGoogle Scholar
  51. Lee, C. K., 1987, “Piezoelectric Laminates for Torsional and Bending Modal Control: Theory and Experiment,” Ph.D. dissertation, Cornell University, Ithaca, New York.Google Scholar
  52. Lee, C. K. and Moon, F. C., 1989a (June), “Laminated Piezoelectric Plates for Torsion and Bending Sensors and Actuators” J. Acoust. Soc. Am., Vol. 85, pp. 2432–2439.Google Scholar
  53. Lee, C. K. and Moon, F. C., 1989b, “Laminated Piezopolymer Plates for Torsional and Bending Modal Control,” U.S. Patent No.4, 868, 447.Google Scholar
  54. Lee, C.-K., Chiang, W.-W., and O’Sullivan, T. C., 1989a, “Piezoelectric Modal Sensors and Actuators Achieving Critical Active Damping on a Cantilever Plate,” AIAA paper No. 89–1390, Proc. of AIAA/ASME/ASCE/A HS/ASC 30th Structures, Structural Dynamics and Materials Conf., pp. 2018–2026.Google Scholar
  55. Lee, C.-K., Chiang, W.-W., and O’Sullivan, T. C., 1989b, “Piezoelectric Modal Sensor/Actuator Pairs for Critical Active Damping Vibration Control,” IBM Research Report RJ 7171; in press, provisionally scheduled for J. Acoust. Soc. Am.,Vol. 85, No. 7 (1991).Google Scholar
  56. Lee, C.-K. and Moon, F. C., 1990 (June), “Modal Sensors/Actuators,” J. Appl. Mech., Vol. 57, pp. 434–441.Google Scholar
  57. Lee, C.-K., 1990a (March), “Theory of Laminated Piezoelectric Plates for the Design of Distributed Sensors/Actuators: Part I. Governing Equations and Reciprocal Relationships,” J. Acoust. Soc. Am., Vol. 87, pp. 1144–1158.Google Scholar
  58. Lee, C.-K., 1990b, “Theory of Laminated Piezopolymer Plates for Torsional and Bending Control,” Proc. International Conference on Advanced Mechatronics, pp. 501–510.Google Scholar
  59. Lee, C.-K., and O’Sullivan, T. C., 1990, “Piezoelectric Strain Rate Gages,” IBM Research Report RJ 7636; in press, provisionally scheduled for J. Acoust. Soc. Am.,Vol. 85, No. 8 (1991).Google Scholar
  60. Lee, C.-K., O’Sullivan, T. C., and Chiang, W.-W., 1991, “Piezoelectric Strain Rate Sensor and Actuator Designs for Active Vibration Control,” AIAA paper No. 91–1064, Proc. of AIAA/ASME/ASCE/AHS/ASC 32nd Structures, Structural Dynamics and Materials Conf., pp. 2197–2205.Google Scholar
  61. Love, A. E. H. 1927, A Treatise on the Mathematical Theory of Elasticity, 4th ed., Cambridge Univ. Press, Cambridge.zbMATHGoogle Scholar
  62. MacMartin, D. G. and Hall, S. R., 1990, “An H Power Flow Approach to Control of Uncertain Structures,” Proc. 1990 American Contr. Conf., pp. 3073–3080.Google Scholar
  63. Martin, G. D., 1977, “On the Control of Flexible Mechanical Systems,” Ph.D. Dissertation, Stanford University, Stanford, California.Google Scholar
  64. Mason, W. P., 1950, Piezoelectric Crystals and Their Application to Ultrasonics, D. Van Nostrand, New York.Google Scholar
  65. Meirovitch, L., 1971, Analytical Methods in Vibrations, Macmillan, New York.Google Scholar
  66. Meirovitch, L. and Baruh, H., 1982, “Control of Self-Adjoint Distributed-Parameter Systems,” J. Guid. and Contr., Vol. 5, No. 1, pp. 60–66.CrossRefzbMATHGoogle Scholar
  67. Meirovitch, L. and Baruh, H., 1985 (November-December), “The Implementation of Modal Filters for Control of Structures,” J. Guid. and Contr., Vol. 8, No. 6, pp. 707–716.Google Scholar
  68. Meirovitch, L., Barvin, H., Montgomery, R. C., and Williams, J. P., 1984, “Nonlinear Control of an Experimental Beam by IMSC,” J. Guid. and Contr., Vol. 7, No. 4, pp. 437–442.CrossRefGoogle Scholar
  69. Miller, D. W. and von Flotow, A. H., 1989, “A Traveling Wave Approach to Power Flow in Structural Networks,” J. Sound Vib., Vol. 128, No. 1, pp. 145–162.ADSCrossRefGoogle Scholar
  70. Miller, D. W., Collins, S. A., and Peltzman, S. P., 1990, “Development of Spatially Convolving Sensors for Structural Control Applications,” AIAA paper No. 90–1127CP, Proc. of AIAA/ASME/ASCE/AHS/ASC 31st Structures, Structural Dynamics and Materials Conf., pp. 2283–2297.Google Scholar
  71. Miller, S. E. and Hubbard, J. E., 1987, “Observability of a Bernoulli-Euler Beam using PVF2 As a Distributed Sensor,” Proc. of the 6th VPIzhaohuanSU/AIAA Symposium, Meirovitch, L. ed., VPIzhaohuanSU, Blacksburg, Virginia, pp. 375–390.Google Scholar
  72. Mindlin, R. D., 1961, “Higher Frequency Vibrations of Crystal Plates,” Qtrly. Appl. Mech., Vol. 19, No. 1, pp. 51–61.zbMATHGoogle Scholar
  73. Moon, F. C., 1972, “Wave Surfaces Due to Impact on Anisotropic Plates,” J. Composite Mater., Vol. 6, pp. 62–79.ADSCrossRefGoogle Scholar
  74. Moon, F. C., 1975, “Wave Propagation and Impact in Composite Materials,” Composite Mater., Chamis, C. C., ed. Ch. 6, Academic, New York.Google Scholar
  75. Roberts, R. A. and Mullis, C. T., 1987, Digital Signal Processing, Addison-Wesley, Mass.zbMATHGoogle Scholar
  76. Murayama, N., Nakanura, N., Obara, H. and Segawa, M., 1976, “The Strong Piezoelectric in Polyvinylidene Fluoride (PVDF),” Ultransonics, Vol. 14, pp. 15–23.CrossRefGoogle Scholar
  77. Natori, M., Motohashi, S., Takahara, K., and Kuwao, F., 1988, “Vibration Control of Truss Beam Structures Using Axial Force Actuators,” Proc. of AIAA/ASME/ASCE/ASH 29th Structures, Structural Dynamics and Materials Conf., pp. 491–499.Google Scholar
  78. NEC Piezoelectric Ceramic Actuator,” 1985, Nippon Electric Corp., Tokyo, Japan. Measurement Group Instruction Manual for Model 2310 Strain Gage Conditioning Amplifier, 1985, Measurement Group Inc., Raleigh, North Carolina.Google Scholar
  79. Nelson, D. F., 1978, “Theory of Nonlinear Electroacoustics of Dielectric, Piezoelectric Crystals,” J. Acoust. Soc. Am., Vol. 63, pp. 1738–1748.ADSCrossRefzbMATHGoogle Scholar
  80. Newnham, R. E., 1989, “Electroceramics,” Rep. Prog. Phys., Vol. 52, pp. 123–156.Google Scholar
  81. Newnham, R. E., Xy, Q. C., Kumar, S., and Cross, L. E.. 1990, “Smart Ceramics,” Ferroelectrics, Vol. 102, pp. 77–89.CrossRefGoogle Scholar
  82. Nye, N. F., 1972, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford Univ. Press, Oxford.Google Scholar
  83. Oz, H. and Meirovitch, L., 1980, “Optimal Modal-Space Control of Flexible Gyroscopic Systems,” J. Guid. and Contr., Vol. 3, No. 3, pp. 218–226.MathSciNetCrossRefGoogle Scholar
  84. Penfield, P., Jr. and Hans, H. A., 1967, “Electrodynamics of Moving Media” Research Monograph, No. 40, MIT Press, Mass.Google Scholar
  85. Piezoelectric Motor/Actuator Kit Manual,1987, Piezo Electric Product Corp.Google Scholar
  86. “Piezoflex: Compound Piezoelectric Material,” Piezoelectric Ceramics: Piezoelectric Transducers, 1985, Tokin America Corp., San Jose, California.Google Scholar
  87. Plump, J., Hubbard, J. E., and Bailey, T., 1987, “Nonlinear Control of a Distributed System: Simulation and Experimental Results,” J. Dyn. Syst. Meas. Contr., Vol. 109, No. 2, pp. 133–139.CrossRefGoogle Scholar
  88. Prakash, B. G., 1980 (May), “Free Vibration of Rectangular Plates,” J. Sound Vib., Vol. 70, No. 2, pp. 303–305.Google Scholar
  89. Reissner, E. and M. Stein, 1951 (June). Stein, 1951 (June), “Torsion and Transverse Bending of Cantilever Plates,” NACA, TN 2369.Google Scholar
  90. Sachse, W., and Hsu, N., 1988, “Ultrasonic Transducers,” Encyclopedia of Materials Science and Engineering, Bever, M. B., ed., Pergamon, New York, pp. 5192–5198.Google Scholar
  91. Schaechter, D. B., 1980, “Hardware Demonstration of Flexible Beam Control,” J. Guid. and Contr., Vol. 5, No. 1, pp. 48–53.CrossRefGoogle Scholar
  92. Schafer, B. E. and H. Holzach, 1985 (September-October), “Experimental Research on Flexible Beam Modal Control,” J. Guid. and Contr., Vol. 8, No. 5, pp. 597–604.Google Scholar
  93. Sessler, G. M., 1981, “Piezoelectricity in Polyvinylidene Fluoride,” J. Acoust. Soc. Am., Vol. 70, pp. 1596–1608.ADSCrossRefGoogle Scholar
  94. Sneddon, I. N., 1972, The Use of Integral Transforms, McGraw-Hill, New York.zbMATHGoogle Scholar
  95. Sober, K., 1980, “Model Reference Adaptive Control for Multi-Input Multi-Output Systems,” Ph.D. dissertation, Rensselner Polytechnic Institute, Rhode Island.Google Scholar
  96. Sung, C.-C., Varadan, V., Bao, X.-Q. and Varadan, V., 1990, “Active Control of Torsional Vibration Using Piezoceramic Sensors and Actuators,” Proc. AIAA/ASME/ASCE/ ANSI ASC 31st Structures, Structural Dynamics, and materials Conf., pp. 2317–2322.Google Scholar
  97. Sun, C. T., Achenbach J. D., and Herrmann, G., 1968, “Continuum Theory for a Laminated Media,” J. Appl. Mech., Vol. 35, pp. 467–475.ADSCrossRefzbMATHGoogle Scholar
  98. Sussner H., and Dransfeld, K., 1979, “Piezoelectricity Effect in Polyvinylidene Fluoride and Its Applications,” Colloid Polym. Sci., Vol. 257, No. 6, pp. 591–602.CrossRefGoogle Scholar
  99. Tamura, M., Yamaguchi, T., Oyaba T., and Yoshimi, T., 1975, “Electroacoustic Transducers with Piezoelectric High Polymer Films,”.1. Audio Eng. Soc.,Vol. 23, No.l, pp. 21–26.Google Scholar
  100. Tamura, M., Hagiwara, S., Matsumoto, S., and Ono, N., 1977, “Some Aspects of Piezoelectricity and Pyroelectricity in Uniaxially Stretched Poly(vinylidene Fluoride),” J. Appl. Phys., Vol. 48, pp. 513–521.ADSCrossRefGoogle Scholar
  101. Tiersten, H. F., 1969, Linear Piezoelectric Plate Vibrations, Plenum, New York.CrossRefGoogle Scholar
  102. Tiersten, H. F., 1981, “Electroelastic Interactions and the Piezoelectric Equations,” J. Acoust. Soc. Am., Vol. 70, pp. 1567–1576.ADSCrossRefzbMATHGoogle Scholar
  103. Timoshenko, S. and Woinowsky-Krieger, S., 1959, Theory of Plates and Shells,McGraw-Hill.Google Scholar
  104. Toda, M., 1979a, “A PVF2 Piezoelectric Bimorph Device for Sensing Presence and Position of Other Objects,” IEEE Trans. Electro. Dev., Vol. ED-26, No. 5, pp. 815–817.Google Scholar
  105. Toda, M., 1979b, “Theory of Air Flow Generation by a Resonant Type PVF2 Bimorph Cantilever Vibration,” Ferroelectrics Vol. 22, pp. 911–918.CrossRefGoogle Scholar
  106. Toda, M., 1979c, “High Field Dielectric Loss of PVF2 and the Electromechanical Conversion Efficiency of a PVF2 Fan,” Ferroelectrics Vol. 22, pp. 919–923.CrossRefGoogle Scholar
  107. Toupin, R. A., 1983, “A Dynamical Theory of Elastic Dielectrics,” Int. J. Eng. Sci., Vol. 1, pp. 101–126.MathSciNetCrossRefGoogle Scholar
  108. Tsai, S. W., and Hahn, H. T., 1980, Introduction to Composite Materials, Technomic, Penn.Google Scholar
  109. Tzou, H. S., and M. Gadre, 1988, “Theoretical Analysis of a Multi-Layered Thin Shell Coupled with Piezoelectric Shell Actuators for Distributed Vibration Controls,” J. Sound Vib., Vol. 132, No. 3, pp. 433–450.ADSCrossRefGoogle Scholar
  110. Tzou, H. S., 1989, “Integrated Distributed Sensing and Active Vibration Suppression of Flexible Manipulators Using Distributed Piezoelectrics,” J. Rototic Syst., Vol. 6, No. 6, pp. 745–767.CrossRefGoogle Scholar
  111. Tzou, H. S., and Tseng, C. l., 1990, “Distributed Piezoelectric Sensor/Actuator Design for Dynamic Measurement/Control of Distributed Parameter Systems: A Piezoelectric Finite Element Approach,” J. Sound Vib., Vol. 138, No. 1, pp. 17–34.ADSCrossRefGoogle Scholar
  112. Vernitron Piezoelectric Division, 1988, “Guide to Modern Piezoelectric Ceramics,” Vernitron Corp., Bedford, Ohio.Google Scholar
  113. von Flotow, A. H. 1986, “Disturbance Propagation in Structural Networks,” J. Sound Vib., Vol. 106, No. 3, pp. 433–450.ADSCrossRefGoogle Scholar
  114. von Flotow, A. H. and Schäfer, B., 1986, “Wave Absorbing Controllers for a Flexible Beam,” J. Guid. and Contr., Vol. 9, No. 6, pp. 673–680.CrossRefGoogle Scholar
  115. Wada Y., and Hayakawa, R., 1976, “Piezoelectricity and Pyroelectricity of Polymers” Jpn. J. Appl. Phys., Vol. 15, No. 11, pp. 2041–2057.ADSCrossRefGoogle Scholar
  116. White J. E., and Angona, F. A., 1955, “Elastic Wave Velocities in Laminated Media,” J. Acoust. Soc. Am., Vol. 27, pp. 310–317.ADSCrossRefGoogle Scholar
  117. Whittaker, E. J. W., 1981, “The Thirty-Two Crystal Classes,” Crystallography, Pergamon, New York, Chap. 7.Google Scholar
  118. Won, C.-C., Juang, J.-N., and Lee, C.-K., 1990 (July), “Shear Strain Rate Measurement Applied to Vibration Control of High-rise Buildings,” Intelligent Structures, Chong, C. P., Lin, S. C. and Li, J. C., ed., Elsevier Applied Science, New York, pp. 299–311.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • C.-K. Lee
    • 1
  1. 1.IBM Research DivisionAlmaden Research CenterSan JoseUSA

Personalised recommendations