Skip to main content

Control of alternate-year flight activities in high-alpine Ringlet butterflies (Erebia, Satyridae) and Burnet moths (Zygaena, Zygaenidae) from temperate environments

  • Chapter

Part of the book series: Series Entomologica ((SENT,volume 52))

Abstract

Fourteen of 27 species of Ringlet butterflies of the high-alpine zone have a two-year developmental cycle with obligatory dormancy in young larval instars (L1, L2) in the first winter and in the penultimate instar (L4) in the second winter. Long-term collection records show that all semivoltine species fly mainly in odd years. Oscillations in population density have been synchronous since 1918. They cannot be explained exclusively by the semivoltine cycle. The few specimens in the intervening years might originate from parallel broods. Samples of field-collected young larvae from semivoltine species were attacked by parasitoids (Ichneumonidae, Braconidae) mainly in odd years. It is hypothesized that parasitoids emerging from the larger population of alternate years control the smaller populations of the following years. Once established in an abundant semivoltine species, these density-dependent biennial fluctuations of parasitoid frequencies would control the biennial reproductive success of all semivoltine Ringlet species that exhibit two obligatory, density-independent dormancies.

Burnet moths from temperate environments are abundant every year whatever the weather. Larvae can repeatedly enter a facultative diapause in different instars (L3—L10), characterized by moulting to a decolourized morph of smaller size. Consequently some individuals skip one or more reproduction periods, so that the generation time may vary from one to four years, and generations overlap. Diapause processes with different diapause stages not only are under the control of different temperature-photoperiod combinations, but also are influenced by the number of photoperiodic cycles experienced during the temperature-dependent period spent in each larval instar. In experiments with photoperiods below the critical daylength, the developmental rate of pre-diapause feeding instars increased and individual differences in developmental velocity were pronounced. In extreme short-day conditions larvae with slow larval development perceive more short-day cycles from the L1 stage onwards and hence enter diapause in earlier stages. Larvae with more rapid development enter diapause later in older instars (L5, L6). Larvae with slower development are predisposed to enter diapause in early instars and to repeat diapause in successive years in later instars. Specimens following this developmental pathway may have allowed successful colonization of more northern habitats with unstable and unpredictable weather conditions, where cold summers prevent reproduction in some seasons. Data from local populations reveal clinal variation in these diapause reactions.

Occurrence of repeated diapause is an apomorphic trait in the genus Zygaena and may have assisted the adaptive radiation of this species-rich genus in the Palaearctic. In Erebia, repeated diapause seems to have evolved separately in closely related species groups. A problem still unsolved is how variable growth rates evolved within Zygaena populations and among Erebia species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aellen, M. 1993. Die Gletscher der Schweizer Alpen im Jahr 1991/92. Die Alpen 69: 212–232.

    Google Scholar 

  • Boer, P.J. den. 1970. Stabilization of animal numbers and the heterogeneity of the environment: The problem of the persistence of sparse populations. In: Dynamics of Populations. P.J. den Boer & G.R. Gradwell, editors. Proc. Adv. Study Inst. Dynamics Numbers Popul. ( Oosterbeek, 1970 ). pp. 77–97.

    Google Scholar 

  • Boer, P.J. den. 1973. Das Überleben von Populationen and Arten and die Bedeutung von Umweltheterogenität. Verh. dt. zool. Ges. 66 [19731: 125–135.

    Google Scholar 

  • Bradshaw, W.E. 1969. Major environmental factors inducing the termination of larval diapause in Chaoborus americanus. Biol. Bull. Mar. Lab. Woods Hole 136: 2–8.

    Google Scholar 

  • Bradshaw, W.E. 1973. Homeostasis and polymorphism in vernal development of Chaoborus americanus. Ecology 54: 1247–1249.

    Article  Google Scholar 

  • Bradshaw, W.E. & Lounibos, L.P. 1977. Evolution of dormancy and its photoperiodic control in pitcher-plant mosquitos. Evolution 31: 546–567.

    Article  Google Scholar 

  • Bulmer, M.G. 1984. Delayed germination of seed: Cohen’s model revisited. Theor. Popul. Biol. 26: 367–377.

    Google Scholar 

  • Burgeff, H. 1910. Beiträge zur Biologic der Gattung Zygaena II. Z. wiss. InsektBiol. 6:39–44, 97–98.

    Google Scholar 

  • Burgeff, H. 1921. Beiträge zur Biologie der Gattung Zygaena IV. Mitt. munch. ent. Ges. 11: 50–64.

    Google Scholar 

  • Butler, M.G. 1982a. A 7-year life cycle for two Chironomus species in arctic Alaskan tundra ponds. Can. J. Zool. 60: 58–60.

    Google Scholar 

  • Butler, M.G. 1982b. Production dynamics of some arctic Chironomus larvae. Limnol. Oceanogr. 27: 728–736.

    Google Scholar 

  • Butler, M.G. & McMillan, A.M. 1990. Cohort structure and voltinism in two profundal Chironomus populations. Verh. int. Verein theor. angew. Limnol. 24: 438–444.

    Google Scholar 

  • Cohen, D. 1970. A theoretical model for the optimal timing of diapause. Am. Nat. 104: 389–400.

    Google Scholar 

  • Corbet, P.S. 1956. Environmental factors influencing the induction and termination of diapause in the Emperor dragonfly Anax imperator. J. Exp. Biol. 33: 1–14.

    Google Scholar 

  • Danks, H.V. 1981. Arctic Arthropods. A Review of Systematics and Ecology with Particular Reference to the North American Fauna. Entomological Society of Canada, Ottawa. 608 pp.

    Google Scholar 

  • Danks, H.V. 1987. Insect Dormancy: An Ecological Perspective. Biological Survey of Canada ( Terrestrial Arthropods ), Ottawa. 439 pp.

    Google Scholar 

  • Danks, H.V. 1992a. Long life cycles in insects. Can. Ent. 124: 167–187.

    Google Scholar 

  • Danks, H.V. 1992b. Arctic insects as indicators of environmental change. Arctic 45: 159–166.

    Google Scholar 

  • Danks, H.V. & Ring, R.A. 1989. Arctic invertebrate biology: Action required. Bull. Ent. Soc. Can. 21(3), Suppl. 7 pp.

    Google Scholar 

  • Douwes, P. 1980. Periodical appearance of species of the butterfly genera Oeneis and Erebia in Fennoscandia ( Lepidoptera, Satyridae). Entomologia Gen. 6: 151–157.

    Google Scholar 

  • Downes, J.A. 1965. Adaptations of insects in the arctic. A. Rev. Ent. 10: 257–274.

    Google Scholar 

  • Ehrlich, P.R. 1956. Problems of arctic-alpine insect distribution as illustrated by the butterfly genus Erebia (Satyridae). Proc. 10th Int. Congr. Ent. 1: 683–686.

    Google Scholar 

  • Falkovich, M.I. 1979. Seasonal development of desert Lepidoptera of Soviet Central Asia and a historical analysis of the Lepidoptera fauna. Ent. Rev. 58 (2): 20–45.

    Google Scholar 

  • Greenslade, P.J.M. 1983. Adversity selection and the habitat templet. Am. Nat. 122: 352–365.

    Google Scholar 

  • Hanski, I. 1988. Four kinds of extra long diapause in insects: A review of theory and observations. Annas Zool. Fenn. 25: 37–52.

    Google Scholar 

  • Hanski, I. & Stähls, G. 1990. Prolonged diapause in fungivorous Pegomyia flies. Ecol. Ent. 15: 241–244.

    Google Scholar 

  • Harvey, G.T. 1967. On coniferophagous species of Choristoneura (Lep.,Tortricidae) in North America. V. Second diapause as a species character. Can. Ent. 99: 486–503.

    Google Scholar 

  • Heliövaara, K. & Väisänen, R. 1984. The biogeographical mystery of alternate-year populations of Aradus cinnamomeus. J. Biogeogr. 11: 491–499.

    Article  Google Scholar 

  • Heliövaara, K. & Väisänen, R. 1986. Bugs in bags: Intraspecific competition affects the biogeography of the alternate-year population of Aradus cinnamomeus ( Heteroptera ). Oikos 47: 327–334.

    Google Scholar 

  • Heliövaara, K. & Väisänen, R. 1988. Periodicity of Aradus cinnamomeus in northern Europe. Ent. Tidskr. 109: 53–58.

    Google Scholar 

  • Higgins, L.G. 1975. The Classification of European Butterflies. Collins, London. 320 pp.

    Google Scholar 

  • Hinnekint, O.N. & Dumont, H.J. 1989. Multi-annual cycles in populations of Ischnura e. elegans induced by crowding and mediated by sexual aggression. Entomologia Gen. 14: 161–166.

    Google Scholar 

  • Jônasson, P.M. 1970. Population studies on Chironomus anthracinus. In: Dynamics of Populations. P.J. den Boer & G.R. Gradwell, editors. Proc. Adv. Study Inst. Dynamics Numbers Popul. ( Oosterbeek, 1970 ). pp. 220–231.

    Google Scholar 

  • Karban, R. 1982. Increased reproductive success at high densities and predator satiation for periodical cicadas. Ecology 63: 321–328.

    Article  Google Scholar 

  • Karban, R. 1986. Prolonged development in cicadas. In: The Evolution of Insect Life Cycles. F. Taylor & R. Karban, editors. Springer-Verlag, New York. pp. 222–235.

    Chapter  Google Scholar 

  • Kent, C. 1980. Environmental variability and dormancy. Abstr. 2nd Int. Congr. Syst. Evol. Biol., Vancouver 1980. p. 256.

    Google Scholar 

  • Kevan, P.G. & Kukal, O. 1993. Corrigendum: A balanced life table for Gynaephora groenlandica ( Lepidoptera: Lymantriidae), a long-lived high arctic insect, and implications for the stability of its populations. Can. J. Zool. 71: 1699–1701.

    Google Scholar 

  • Kukal, O. & Kevan, P.G. 1987. The influence of parasitism on the life history of a high arctic insect, Gynaephora groenlandica (Wöcke) ( Lepidoptera: Lymantriidae). Can. J. Zool. 65: 156–163.

    Google Scholar 

  • Lepidopteren-Arbeitsgruppe. 1987. Tagfalter und ihre Lebensräume. Ed: Schweizerischer Bund für Naturschutz. Fotorotar, Egg/ZH. 516 pp.

    Google Scholar 

  • Lloyd, M. & Dybas, H. 1966. The periodical cicada problem. I. Population ecology. Evolution 20: 133–149.

    Google Scholar 

  • Loertscher, R.M. 1991. Population biology of two satyrinae butterflies, Erebia meolans and Erebia aethiops. Nota Lepid. Suppl. 2: 22–31.

    Google Scholar 

  • Lorkovié, Z. 1957. Die Spezifitätsstufen in der Erebia tyndarus-Gruppe. Biol. Glasn. 10:61–100. Lorkovié, Z. 1958. Some pecularities of spatially and sexually restricted gene exchange in the Erebia tyndarus-group. Cold Spring Harb. Symp. Quant. Biol. 23: 319–325.

    Google Scholar 

  • Lumme, J. 1978. Phenology and photoperiodic diapause in northern populations of Drosophila. In: Evolution of Insect Migration and Diapause. H. Dingle, editor. Springer-Verlag, New York. pp. 145–170.

    Chapter  Google Scholar 

  • MacDonald, M. 1976. Extended diapause in a discrete generation population model. Math. Biosci. 31: 255–257.

    Google Scholar 

  • Masters, J.H. 1974. Biennialism in Oeneis macounii. J. Lepid. Soc. 28: 237–242.

    Google Scholar 

  • Mengelkoch, C. 1993. Ökologische Untersuchungen zu den alternierenden Flugjahren der Erebien (Lepidoptera, Satyridae). Unpubl. Diplom.-Thesis, Universität zu Köln. 101 pp.

    Google Scholar 

  • Mengelkoch, C., Wipking, W. & Neumann, D. 1993. Mögliche Ursachen für die zweijährigen Populationsdichteschwankungen bei alpinen Mohrenfaltern der Gattung Erebia (Lepidoptera, Satyridae). Verh. dt. zool. Ges. 86 [1993]: 8.

    Google Scholar 

  • Mikkola, K. 1976. Alternate-year flight of northern Xestia species (Lepidoptera) and its adaptive significance. Annls Ent. Fenn. 42: 191–199.

    Google Scholar 

  • Mikkola, K. & Kononenko, V.S. 1989. Flight year of the alternate-year Xestia moths (Lepidoptera) in north-eastern Siberia–A character from the Ice Ages? Nota Lepid. 12: 144–152.

    Google Scholar 

  • Moore, N.W. 1975. Butterfly transects in a linear habitat. Ent. Gaz. 26: 71–78.

    Google Scholar 

  • Naumann, C.M. 1990. Stammesgeschichtliche Rekonstruktion und ökologische Beziehungen der Organismen-Ansätze für interdisziplinäre Kooperation. Verh. dt. zool. Ges. 83 [1989]: 291–301.

    Google Scholar 

  • Neumann, D. 1986. Life cycle strategies of an intertidal midge between subtropic and arctic latitudes. In: The Evolution of Insect Life Cycles. F. Taylor & R. Karban, editors. Springer-Verlag, New York. pp. 3–19.

    Chapter  Google Scholar 

  • Norling, U. 1984. Life history patterns in the northern expansion of dragonflies. Adv. Odonatol. 2: 127–156.

    Google Scholar 

  • Pianka, E.R. 1974. Evolutionary Ecology. Harper & Row, New York. 356 pp.

    Google Scholar 

  • Ratte, H.T. 1985. Temperature and insect development. In: Environmental Physiology and Biochemistry of Insects. K.H. Hoffmann, editor. Springer-Verlag, Berlin. pp. 33–66.

    Google Scholar 

  • Roos, P. 1989. Satyridae: Ontogenetische und evolutive Entwicklung. Verh. Westdt. ent. Tag Düsseldorf 1988: 307–315.

    Google Scholar 

  • Roos, P. & Arnscheid, D. 1979. Aspekte der Ökologie und Zoogeographie der europäischen Erebien. Atalanta 10: 298–309.

    Google Scholar 

  • Roos, P. & Arnscheid, D. 1990. Systematik der Gattung Erebia: Methoden, Ergebnisse und Probleme. Verh. Westdt. ent. Tag Düsseldorf 1989: 243–249.

    Google Scholar 

  • Saunders, D.S. 1982. Insect Clocks. Pergamon, Oxford. 279 pp.

    Google Scholar 

  • Sonderegger, P. 1980. Verwandtschaftsgrade der Erebien, eine Erwiderung. Atalanta 11: 120–124.

    Google Scholar 

  • Sotavalta, O., Karvonen, Ei., Karvonen, Ee., Korpela, S. & Korpela, J. 1980. The early stages and biology of Acerbia alpina. Notul. Ent. 60: 89–95.

    Google Scholar 

  • Sunose, T. 1978. Studies on extended diapause in Hasegawa îa sasacola and its parasites. Kontyû 46: 400–415.

    Google Scholar 

  • Suomalainen, E. 1937. Über das periodische Auftreten von Erebia ligea in Finland. Annls Ent. Fenn. 3: 78–83.

    Google Scholar 

  • Takahashi, F. 1977. Generation carryover of a fraction of population members as an adaptation to unstable environmental conditions. Researches Popul. Ecol. 18: 235–242.

    Google Scholar 

  • Taylor, F. 1990. Testing hypotheses about the evolution of the mean phenotype in temporally variable environments. In: Genetics, Evolution and Coordination of Insect Life Cycles. F. Gilbert, editor. Springer-Verlag, London. pp. 153–177.

    Google Scholar 

  • Thomas, J.A. 1984. The conservation of butterflies in temperate countries: Past efforts and lessons for the future. In: The Biology of Butterflies. V.E. Vane-Wright & P.R. Ackery, editors. Symp. R. Ent. Soc. Lond. 11: 333–353.

    Google Scholar 

  • Tremewan, W.G. 1988. A Bibliography of Zygaeninae. Harley, Colchester. 188 pp.

    Google Scholar 

  • Valle, K.J. 1933. Die Lepidopterenfauna des Petsamogebietes. Annls Zool. Soc. Zool.-bot. Fenn. Vanamo 1: 1–262.

    Google Scholar 

  • Varley, G.C., Gradwell, G.R. & Hassel, M.P. 1973. Populationsbiologie der Insekten. Thieme, Stuttgart. 211 pp.

    Google Scholar 

  • Venema, M. 1986. Untersuchungen über den Einfluss der Photoperiode auf die Larvalentwicklung von Zygaena trifolii. Unpubl. Diplom-Thesis, Universität Bielefeld. 113 pp.

    Google Scholar 

  • Viebahn, M. 1987. Respiration, Lipid-und Glykogengehalt bei Diapause-und Nondiapause-Larven von Zygaena trifolii Esp. Unpubl. Diplom-Thesis, Universität zu Köln. 109 pp.

    Google Scholar 

  • Vorbrodt, C. 1925. Können sich Schmetterlinge unterm Schnee weiterentwickeln ? Int. ent. Z. 18: 170–174.

    Google Scholar 

  • Warren, B.C.S. 1936. Monograph of the Genus Erebia. British Museum ( Natural History ), London. 408 pp.

    Google Scholar 

  • White, J. A. & Lloyd, M. 1975. Growth rates of 17- and 13-year periodical cicadas. Am. Midl. Nat. 94: 127–143.

    Google Scholar 

  • Wipking, W. 1985. Ökologische Untersuchungen über die Habitatbindung der Zygaenidae. Mitt. munch. Ent. Ges. 74 [1984]: 37–59.

    Google Scholar 

  • Wipking, W. 1987. Ökologische Untersuchungen über die Diapauseregulation bei westpaläarktischen Stämmen einer Schmetterlingsfamilie (Ins., Lepidoptera, Zygaenidae). Unpubl. Ph.D. Thesis, Universität zu Köln. 152 pp.

    Google Scholar 

  • Wipking, W. 1988. Repeated larval diapause and diapause-free development in geographic strains of the burnet moth Zygaena trifolii Esp., I. Discontinuous clinal variation in photoperiodically controlled diapause induction. Oecologia 77: 557–564.

    Google Scholar 

  • Wipking, W. 1990. Facultative and obligatory diapause responses in three species of Burnet moths: A characterization of life-cycle phenologies by field observations and laboratory experiments. In: Genetics, Evolution and Coordination of Insect Life Cycles. F. Gilbert, editor. Springer-Verlag, London. pp. 229–241.

    Google Scholar 

  • Wipking, W. 1992. Cold hardiness in the caterpillars of Burnet and Forester moths. In: Proceedings of the 4th Symposium on Zygaenidae (Nantes 11–13 September 1987). C. Dutreix, C.M. Naumann & W.G. Tremewan, editors. Theses Zool. 19: 129–143.

    Google Scholar 

  • Wipking, W. 1993. Die larvale Diapause bei alpinen und nördlichen Blutströpfchenschmetterlingen-Versuche zu induzierenden Kurztagbedingungen, verlängerten Entwicklungsgeschwindigkeiten, frühen und späten Diapausestadien und deren hormonaler Kontrolle. Verh. dt. zool. Ges. 86 [1993]: 14.

    Google Scholar 

  • Wipking, W. 1993. Möglichkeiten, Grenzen und Defizite im Schutz tagaktiver Schmetterlinge in

    Google Scholar 

  • der mitteleuropäischen (Kultur?)]-Landschaft. Verh. Westdt. ent. Tag Düsseldorf 1992:225–236.

    Google Scholar 

  • Wipking, W. & Naumann, C. 1992. Diapause and related phenomena in Zygaenidae moths. In: Proceedings of the 4th Symposium on Zygaenidae (Nantes 11–13 September 1987). C. Dutreix, C.M. Naumann & W.G. Tremewan, editors. Theses Zool. 19: 107–128.

    Google Scholar 

  • Wipking, W. & Neumann, D. 1986. Polymorphism in the larval hibernation strategy of the Burnet moth Zygaena trifolii. In: The Evolution of Insect Life Cycles. F. Taylor & R. Karban, editors. Springer-Verlag. New York. pp. 125–134.

    Chapter  Google Scholar 

  • Wissinger, S.A. 1988. Life history and size structure of larval dragonfly populations. J. N. Am. Benthol. Soc. 7: 13–28.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wipking, W., Mengelkoch, C. (1994). Control of alternate-year flight activities in high-alpine Ringlet butterflies (Erebia, Satyridae) and Burnet moths (Zygaena, Zygaenidae) from temperate environments. In: Danks, H.V. (eds) Insect life-cycle polymorphism. Series Entomologica, vol 52. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1888-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1888-2_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4401-3

  • Online ISBN: 978-94-017-1888-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics