Skip to main content

How to Achieve Maximal Renoprotection in Non-Diabetic Chronic Renal Disease

  • Chapter
Improving Prognosis for Kidney Disorders

Abstract

A rapid, global increase in the number of patients requiring renal replacement therapy necessitates that effective strategies for renoprotection are developed and widely applied. In this paper we review the experimental and clinical evidence in support of individual renoprotective interventions, including angiotensinconverting enzyme therapy, control of systemic hypertension, dietary protein restriction, reduction of proteinuria, treatment of hyperlipidemia and smoking cessation. We also consider potential future renoprotective therapies. Finally we suggest that, in order to achieve maximal renoprotection, a comprehensive strategy employing all of these elements is required and should be directed at normalizing clinical markers of renal disease in order to induce a state of “remission”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mitch WE, Walser M, Buffington GA, Leman, Jr J: A simple method for estimating progression of chronic renal failure. Lancet 2: 1326–8, 1976

    Article  PubMed  CAS  Google Scholar 

  2. Rutherford WE, Blondin J, Miller JP, Greenwalt AS, Vavra JD: Chronic progressive renal disease: rate of change of serum creatinine. Kidney Int 11: 62–70, 1977

    Article  PubMed  CAS  Google Scholar 

  3. Shimamura T, Ashton B, Morrison MD: A progressive glomerulosclerosis occurring in partial five-sixths nephrectomized rats. Am J Pathol 79: 95–106, 1975

    PubMed  CAS  Google Scholar 

  4. Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM: Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Physiol 241: F85–93, 1981

    PubMed  CAS  Google Scholar 

  5. Brenner BM, Meyer TW, Hostetter TH: Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med 307: 652–9, 1982

    Article  PubMed  CAS  Google Scholar 

  6. Hostetter TH, Meyer TW, Rennke HG, Brenner BM: Chronic effects of dietary protein in the rat with intact and reduced renal mass. Kidney Int 30: 509–17, 1986

    Article  PubMed  CAS  Google Scholar 

  7. Anderson S, Meyer TW, Rennke HG, Brenner BM: Control of glomerular hypertension limits glomerular injury in rats with reduced renal mass. J Clin Invest 76: 612–9, 1985

    Article  PubMed  CAS  Google Scholar 

  8. Anderson S, Rennke HG, Brenner BM: Therapeutic advantage of converting enzyme inhibitors in arresting progressive renal disease associated with systemic hypertension in the rat. J Clin Invest 77: 1993–2000, 1986

    Article  PubMed  CAS  Google Scholar 

  9. Kagami S, Border WA, Miller DE, Noble NA: Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-beta expression in rat glomerular mesangial cells. J Clin Invest 93: 2431–7, 1994

    Article  PubMed  CAS  Google Scholar 

  10. van Leeuwen RT, Kol A, Andreotti F, Kluft C, Maseri A, Sperti G: Angiotensin II increases plasminogen activator inhibitor type 1 and tissue-type plasminogen activator messenger RNA in cultured rat aortic smooth muscle cells. Circulation 90: 362–8, 1994

    Article  PubMed  Google Scholar 

  11. Vaughan DE, Lazos SA, Tong K: Angiotensin II regulates the expression of plasminogen activator inhibitor-1 in cultured endothelial cells. A potential link between the renin-angiotensin system and thrombosis. J Clin Invest 95: 995–1001, 1995

    Article  PubMed  CAS  Google Scholar 

  12. Foris G, Derso B, Medgyesi GA, Fust G: Effect of angiotensin II on macrophage functions. Immunology 48: 529–35, 1983

    PubMed  CAS  Google Scholar 

  13. Hahn AW, Jonas U, Buhler FR, Resink TJ: Activation of human peripheral monocytes by angiotensin II. FEBS Lett 347: 178–80, 1994

    Article  PubMed  CAS  Google Scholar 

  14. Greene EL, Kren S, Hostetter TH: Role of aldosterone in the remnant kidney model in the rat..1 Clin Invest 98: 1063–8, 1996

    CAS  Google Scholar 

  15. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD: The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N Engl J Med 329: 1456–62, 1993

    Article  PubMed  CAS  Google Scholar 

  16. Maschio G, Alberti D, Janin G, Locatelli F, Mann JF, Motolese M, Ponticelli C, Ritz E, Zuchelli P: Effect of angiotensinconverting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-ConvertingEnzyme Inhibition in Progressive Renal Insufficiency Study Group. N Eng J Med 334: 939–45, 1996

    Article  CAS  Google Scholar 

  17. GISEN (Gruppo Italiano di Studi Epidemiologici in Nefrologia): Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. Lancet 349: 1857–63, 1997

    Article  Google Scholar 

  18. Ruggenenti P, Perna A, Gherardi G, Gaspari F, Benini R, Remuzzi G: Renal function and requirement for dialysis in chronic nephropathy patients on long-term ramipril: REIN follow-up trial. Gruppo Italiano di Studi Epidemiologici in Nefrologia (GISEN). Ramipril Efficacy in Nephropathy. Lancet 352: 1252–6, 1998

    Article  PubMed  CAS  Google Scholar 

  19. Ruggenenti H, Perna A, Benini R, Bertani T, Zoccali C, Maggiore Q, Salvadori M, Remuzzi G: In chronic nephropathies prolonged ACE inhibition can induce remission: dynamics of time-dependent changes in GFR. Investigators of the GISEN Group. Gruppo Italian Studi Epidemiologici in Nefrologia. J Am Soc Nephrol 10: 997–1006, 1999

    PubMed  CAS  Google Scholar 

  20. Ruggenenti P, Perna A, Gherardi G, Garini G, Zoccali C, Salvadori M, Scolari F, Schena FP, Remuzzi G: Renoprotective properties of ACE-inhibition in non-diabetic nephropathies with non-nephrotic proteinuria. Lancet 354: 359–64, 1999

    Article  PubMed  CAS  Google Scholar 

  21. HOPE (The Heart Outcomes Prevention Evaluation Study Investigators): Effects of an angiotensin-converting-enzyme inhibitor, ramipril on cardiovascular events in high-risk patients. N Engl J Med 342: 145–53, 2000

    Article  Google Scholar 

  22. Mogensen CE: Progression of nephropathy in long-term diabetics with proteinuria and effect of initial anti-hypertensive treatment. Scand J Clin Lab Invest 36: 383–8, 1976

    Article  PubMed  CAS  Google Scholar 

  23. Parving Hfl, Andersen AR, Smidt UM, Svendsen PA: Early aggressive antihypertensive treatment reduces rate of decline in kidney function in diabetic nephropathy. Lancet 1: 1175–9, 1983

    Google Scholar 

  24. Klag MJ, Whelton PK, Randall BL, Neaton JD, Brancati FL, Ford CE, Shulman NB, Stamler J: Blood pressure and end-stage renal disease in men. N Engl J Med 334: 13–8, 1996

    Article  PubMed  CAS  Google Scholar 

  25. Klahr S, Levey AS, Beck GJ, Caggiula AW, Hunsicker L, Kusek JW, Striker G: The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N Engl J Med 330: 877–84, 1994

    Article  PubMed  CAS  Google Scholar 

  26. Peterson JC, Adler S, Burkart JM, Greene T, Hebert LA, Hunsicker LG, King AJ, Klahr S, Massry SG, Seifler JL: Blood pressure control, proteinuria, and the progression of renal disease. The Modification of Diet in Renal Disease Study. Ann Intern Med 123: 754–62, 1995

    Article  PubMed  CAS  Google Scholar 

  27. Taal MW, Chertow GM, Rennke HR, Gurnani A, Jiang T, Shahsafaei A, Troy JL, Brenner BM, Mackenzie HS: Mechanisms underlying renoprotection during renin-angiotensin system blockade. Am J Physiol 280: F343–55, 2001

    CAS  Google Scholar 

  28. Lewis JB, Berl T, Bain RP, Rohde RD, Lewis EJ: Effect of intensive blood pressure control on the course of type 1 diabetic nephropathy. Collaborative Study Group. Am J Kidney Dis 34: 809–17, 1999

    Article  PubMed  CAS  Google Scholar 

  29. Levey AS, Adler S, Greene T, Hunsicker LG, Kusek JW, Rogers NL, Teschan PE: Effects of dietary protein restriction on the progression of moderate renal disease in the Modification of Diet in Renal Disease Study. J Am Soc Nephrol 7: 2616–26, 1996

    Google Scholar 

  30. Levey AS, Adler S, Caggiula AW, England BK, Greene T, Hunsicker LG, Kusek JW, Rogers NL, Teschan PE: Effects of dietary protein restriction on the progression of advanced renal disease in the Modification of Diet in Renal Disease Study. Am J Kidney Dis 27: 652–63, 1996

    Article  PubMed  CAS  Google Scholar 

  31. Pedrini MT, Levey AS, Lau J, Chalmers TC, Wang PH: The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal diseases: a meta-analysis. Ann Intern Med 124: 627–32, 1996

    Article  PubMed  CAS  Google Scholar 

  32. Remuzzi G, Bertani T: Pathophysiology of progressive nephropathies. N Engl J Med 339: 1448–56, 1998

    Article  PubMed  CAS  Google Scholar 

  33. Zoja C, Morigi M, Figliuzzi M, Bruzzi I, Oldroyd S, Benigni A, Ronco P, Remuzzi G: Proximal tubular cell synthesis and secretion of endothelin-1 on challenge with albumin and other proteins. Am J Kidney Dis 26: 934–41, 1995

    Article  PubMed  CAS  Google Scholar 

  34. Wang Y, Chen J, Chen L, Tay YC, Rangan GK, Harris DC: Induction of monocyte chemoattractant protein-1 in proximal tubule cells by urinary protein. J Am Soc Nephrol 8: 1537–45, 1997

    PubMed  CAS  Google Scholar 

  35. Zoja C, Donadelli R, Colleoni S, Figliuzzi M, Bonazzola S, Morigi M, Remuzzi G: Protein overload stimulates RANTES production by proximal tubular cells depending on NF-kappa B activation. Kidney Int 53: 1608–15, 1998

    Article  PubMed  CAS  Google Scholar 

  36. Abbate M, Zoja C, Corna D, Capitanio M, Bertani T, Remuzzi G: In progressive nephropathies, overload of tubular cells with filtered proteins translates glomerular permeability dysfunction into cellular signals of interstitial inflammation. J Am Soc Nephrol 9: 1213–24, 1998

    PubMed  CAS  Google Scholar 

  37. Eddy AA, Giachelli CM: Renal expression of genes that promote interstitial inflammation and fibrosis in rats with protein-overload proteinuria. Kidney Int 47: 1546–57, 1995

    Article  PubMed  CAS  Google Scholar 

  38. Monzani G, Bergesio F, Ciuti R, Rosati A, Frizzi V, Serruto A, Vitali D, Benucci A, Tosi PL, Bandini S, Salvadori M: Lipoprotein abnormalities in chronic renal failure and dialysis patients. Blood Puff 14: 262–72, 1996

    Article  CAS  Google Scholar 

  39. Hunsicker LG, Adler S, Caggiulia A, England BK, Greene T, Kusek JW, Rogers NL, Teschan PE: Predictors of progression of renal disease in the Modification of Diet in Renal Disease Study. Kidney Int 51: 1908–19, 1997

    Article  PubMed  CAS  Google Scholar 

  40. Samuelsson O, Aurell M, Knight-Gibson C, Alaupovic P, Altman P-O: Apolipoprotein-B-containing lipoproteins and the progression of renal insufficiency. Nephron 63: 279–85, 1993

    Article  PubMed  CAS  Google Scholar 

  41. Krolewski AS, Warram JH, Christlieb AR: Hypercholesterolemia-a determinant of renal function loss and deaths in IDDM patients with nephropathy. Kidney Int 45: S125–31, 1994

    CAS  Google Scholar 

  42. Ravid M, Brosh D, Ravid-Safran D, Levy Z, Rachmani R: Main risk factors for nephropathy in type 2 diabetes mellitus are plasma cholesterol levels, mean blood pressure, and hyperglycemia. Arch Intern Med 158: 998–1004, 1998

    Article  PubMed  CAS  Google Scholar 

  43. Mulec H, Johnson S-A, Bjorck S: Relation between serum cholesterol and diabetic nephropathy. Lancet 335: 1537–8, 1990

    Article  PubMed  CAS  Google Scholar 

  44. Maschio G, Oldrizzi L, Rugiu C, Loschiavo C: Serum lipids in patients with chronic renal failure on long-term, protein-restricted diets. Am J Med 87: 51N - 4N, 1989

    PubMed  CAS  Google Scholar 

  45. Grone EF, Abboud HE, Hohne M, Walli AK, Grone HJ, Stuker D, Robenek H, Wieland E, Seidel D: Actions of lipoproteins in cultured human mesangial cells: modulation by mitogenic vasoconstrictors. Am J Physiol 263: F686–96, 1992

    PubMed  CAS  Google Scholar 

  46. Rovin BH, Tan LC: LDL stimulates mesangial fibronectin production and chemoattractant expression. Kidney Int 43: 218–25, 1993

    Article  PubMed  CAS  Google Scholar 

  47. Wheeler DC, Chana RS, Toplcy N, Petersen MM, Davies M, Williams JD: Oxidation of low density lipoprotein by mesangial cells may promote glomerular injury. Kidney Int 45: 1628–36, 1994

    Article  PubMed  CAS  Google Scholar 

  48. Kasiske B, O’Donnell MP, Schmitz PG, Kim Y, Keane WF: Renal injury of diet-induced hypercholesterolemia in rats. Kidney Int 37: 880–91, 1990

    Article  PubMed  CAS  Google Scholar 

  49. Kasiske BL, O’Donnel MP, Garvis WJ, Keane WF: Pharmacologic treatment of hyperlipidemia reduces injury in rat 5/6 nephrectomy model of chronic renal failure. Cire Res 62: 367974, 1988

    Google Scholar 

  50. Kasiske BL, O’Donnell MP, Cleary MP, Keane WF: Treatment of hyperlipidemia reduces glomerular injury in obese Zucker rats. Kidney Int 33: 667–72, 1988

    Article  PubMed  CAS  Google Scholar 

  51. O’Donell MP, Kasiske BL, Kim Y, Schmitz PG, Keane WF: Lovastatin retards the progression of established glomerular disease in obese Zucker rats. Am J Kidney Dis 22: 83–9, 1993

    Google Scholar 

  52. Park Y-S, Guijarro C, Kim Y, Massy ZA, Kasiske BL, Keane WF, O’Donnell MP: Lovastatin reduces glomerular macrophage influx and monocyte chemoattractant protein-I mRNA in nephrotic rats. Am J Kidney Dis 31: 190–4, 1998

    Article  PubMed  CAS  Google Scholar 

  53. D’Amico G, Gentile MG: Pharmacological and dietary treatment of lipid abnormalities in nephrotic patients. Kidney Int 39:S-65–9, 1991

    Google Scholar 

  54. Maschio G, Oldrizzi L, Rugiu C, De Base V, Loschiavo C: Effect of dietary manipulation on the lipid abnormalities in patients with chronic renal failure. Kidney Int 39: 570–2, 1991

    Google Scholar 

  55. Spitalcwitz S, Porush JG, Cattran D, Wright N: Treatment of hyperlipidemia in the nephrotic syndrome: the effects of pravastatin therapy. Am J kidney Dis 22: 143–50, 1993

    Google Scholar 

  56. Thomas ME, Harris KPG, Ramaswamy C, Hattersley JM, Wheeler DC, Varghese Z, Williams JD, Walls J, Moorhead JF: Simvastatin therapy for hypercholesterolemic patients with nephrotic syndrome or significant proteinuria. Kidney Int 44: 1124–9, 1993

    Article  PubMed  CAS  Google Scholar 

  57. Muhlhauser I, Sawicki P, Berger M: Cigarette-smoking as a risk factor for macroproteinuria and proliferative retinopathy in Type I (insulin-dependent) diabetes. Diabetologia 29: 500–2, 1986

    Article  PubMed  CAS  Google Scholar 

  58. Chase HP, Garg SK, Marshall G, Berg CL, Harris S, Jackson WE, Hamman RE: Cigarette smoking increases the risk of albuminuria among subjects with type I diabetes. JAMA 265: 614–7, 1991

    Article  PubMed  CAS  Google Scholar 

  59. McKenna K, Thompson C: Microalbuminuria: a marker to increased renal and cardiovascular risk in diabetes mellitus. Scott Med J 42: 99–104, 1997

    PubMed  CAS  Google Scholar 

  60. Orth SR, Stockmann A, Conradt C, Ritz E, Ferro M, Kreusser W, Piccoli G, Rambausek M, Roccatello D, Schafer K, Sieberth HG, Wanner C, Watschinger B, Zucchelli P: Smoking as a risk factor for end-stage renal failure in men with primary renal disease. Kidney International 54: 926–31, 1998

    Article  PubMed  CAS  Google Scholar 

  61. Ward MM, Studenski S: Clinical prognostic factors in lupus nephritis. The importance of hypertension and smoking. Arch Intern Med 152: 2082–8, 1992

    Article  PubMed  CAS  Google Scholar 

  62. Stengel B, Couchoud C, Cenee S, Hemon D: Age, blood pressure and smoking effects on chronic renal failure in primary glomerular nephropathies. Kidney International 57: 2519–26, 2000

    PubMed  CAS  Google Scholar 

  63. Arakawa K: Serine protease angiotensin II systems. J Hypertens Suppl 5: 53–7, 1996

    Google Scholar 

  64. Taal MW, Brenner BM: Renoprotective benefits of RAS inhibition: from ACEI to angiotensin II antagonists. Kidney Int 57: 1803–17, 2000

    Article  PubMed  CAS  Google Scholar 

  65. Nielsen S, Dollerup J, Nielsen B, Jensen HA, Mogensen CE: Losartan reduces albuminuria in patients with essential hypertension. An enalapril controlled 3 months study. Nephrol Dial Transplant 2: 19–23, 1997

    Google Scholar 

  66. Gansevoort RT, de Zeeuw D, de Jong PE: Is the antiproteinuric effect of ACE inhibition mediated by interference in the reninangiotensin system? Kidney Int 45: 861–7, 1994

    Article  PubMed  CAS  Google Scholar 

  67. Lacourciere Y, Belanger A, Godin C, Halle JP, Ross S, Wright N, Marion J: Long-term comparison of losartan and enalapril on kidney function in hypertensive type 2 diabetics with early nephropathy. Kidney International 58: 762–9, 2000

    Article  PubMed  CAS  Google Scholar 

  68. Goldberg AI, Dunlay MC, Sweet CS: Safety and tolerability of losartan potassium, an angiotensin II receptor antagonist, compared with hydrochlorothiazide, atenolol, felodipine ER, and angiotensin-converting enzyme inhibitors for the treatment of systemic hypertension. Am J Cardiol 75: 793–5, 1995

    Article  PubMed  CAS  Google Scholar 

  69. Weber M: Clinical safety and tolerability of losartan. Clin Ther 19: 604–16, 1997

    Article  PubMed  CAS  Google Scholar 

  70. Lacourciere Y, Brunner H, Irwin R, Karlberg BE, Ramsay LE, Snavely DB, Dobbins TW, Faison EP, Nelson EB: Effects of modulators of the renin-angiotensin-aldosterone system on cough. Losartan Cough Study Group. J Hypertens 12: 1387–93, 1994

    PubMed  CAS  Google Scholar 

  71. Benz J, Oshrain C, Henry D, Avery C, Chiang YT, Gatlin M: Valsartan, a new angiotensin H receptor antagonist: a double-blind study comparing the incidence of cough with lisinopril and hydrochlorothiazide. J Clin Pharmacol 37: 101–7, 1997

    Article  PubMed  CAS  Google Scholar 

  72. Russo D, Pisani A, Balletta MM, De Nicola L, Savino FA, Andreucci M, Minutolo R: Additive antiproteinuric effect of converting enzyme inhibitor and losartan in normotensive patients with IgA nephropathy. American Journal of Kidney Diseases 33: 851–6, 1999

    Article  PubMed  CAS  Google Scholar 

  73. Zoccali C, Valvo E, Russo D, Panichi V, Zuccala A: Antiproteinuric effect of Losartan in patients with chronic renal diseases (Letter). Nephrol Dial Transplant 12: 234–5, 1997

    Article  PubMed  CAS  Google Scholar 

  74. Mogensen CE, Noltham S, Tikkanen I, Oren S, Viskoper R, Watts RW, Cooper ME: Randomised controlled trial of dual blockade of renin-angiotensin system in pateints with hypertension, microalbuminuria, and non-insulin dependent diabetes: the candesartan and lisinopril microalbuminuria (CALM) study. BMJ 321: 1440–4, 2000

    Article  PubMed  CAS  Google Scholar 

  75. Burnett JC, Jr.: Vasopeptidase inhibition: a new concept in blood pressure management. J Hypertension 17 (suppl 1): S374–3, 1999

    Google Scholar 

  76. Weber M: Emerging treatments for hypertension: potential role for vasopeptidase inhibition. Am J Hypertension 12: 1395–475, 1999

    Google Scholar 

  77. Trippodo NC, Robl JA, Asaad MM, Fox M, Panchal BC, Schaeffer TR: Effects of omapatrilat in low, normal, and high renin experimental hypertension. Am J Hypertension 11: 363–72, 1998

    Article  CAS  Google Scholar 

  78. Intengan HD, Schiffrin EL: Vasopeptidase inhibition has potent effects on blood pressure and resistance arteries in stroke-prone spontaneously hypertensive rats. Hypertension 35: 1221–5, 2000

    Article  PubMed  CAS  Google Scholar 

  79. Taal MW, Nenov VD, Wong W, Satyal SR, Sakharova O, Hoon Choi J, Troy JL, Brenner BM: Vasopeptidase inhibition affords greater renoprotection than angiotensin-converting enzyme inhibition alone in rats with established nephropathy after 5/6 nephrectomy. (Abstract). J Am Soc Nephrol 11, 2000

    Google Scholar 

  80. Taal MW, Omer SA, Nadim MK, Mackenzie HS: Cellular and molecular mediators in common pathway mechanisms of chronic renal disease progression. Curr Opin Nephrol Hypertens 9: 323–31, 2000

    Article  PubMed  CAS  Google Scholar 

  81. van Goor H, Fidler V, Weening JJ, Grond J: Determinants of focal and segmental glomerulosclerosis in the rat after renal ablation. Evidence for involvement of macrophages and lipids. Lab Invest 64: 754–65, 1991

    PubMed  Google Scholar 

  82. Floege J, Bums MW, Alpers CE, Yoshimura A, Pritzl P, Gordon K, Seifert RA, Bowen-Pope DF, Couser WG, Johnson RJ: Glomerular cell proliferation and PDGF expression precede glomerulosclerosis in the remnant kidney model. Kidney Int 41: 297–309, 1992

    Article  PubMed  CAS  Google Scholar 

  83. Wu LL, Yang N, Roe CJ, Cooper ME, Gilbert RE, Atkins RC, Lan HY: Macrophage and myofibroblast proliferation in remnant kidney: role of angiotensin II. Kidney Int Suppl 63: S221–5, 1997

    PubMed  CAS  Google Scholar 

  84. Schiller B, Moran J: Focal glomerulosclerosis in the remnant kidney model-an inflammatory disease mediated by cytokines. Nephrol Dial Transplant 12: 430–7, 1997

    Article  PubMed  CAS  Google Scholar 

  85. Wu LL, Cox A, Roe CJ, Dziadek M, Cooper ME, Gilbert RE: Transforming growth factor beta 1 and renal injury following subtotal nephrectomy in the rat: role of the renin-angiotensin system. Kidney Int 51: 1553–67, 1997

    Article  PubMed  CAS  Google Scholar 

  86. Taal MW, Zandi-Nejad Z, Weening B, Shahsafaei A, Kato S, Lee K-W, Ziai F, Jiang T, Brenner BM, Mackenzie HS: Pro-inflammatory gene expression and macrophage recruitment in the rat remnant kidney. Kidney Int 58: 1664–76, 2000

    Article  PubMed  CAS  Google Scholar 

  87. Fujihara CK, Malheiros DM, Zatz R, Noronha ID: Mycophenolate mofetil attenuates renal injury in the rat remnant kidney. Kidney International 54: 1510–9, 1998

    Article  PubMed  CAS  Google Scholar 

  88. Romero F, Rodriguez-Iturbe B, Pana G, Gonzalez L, Herrera-Acosta J, Tapia E: Mycophenolate mofetil prevents the progressive renal failure induced by 5/6 renal ablation in rats. Kidney Int 55: 945–55, 1999

    Article  PubMed  CAS  Google Scholar 

  89. Remuzzi G, Zoja C, Gagliardini E, Corna D, Abbate M, Benigni A: Combining an antiproteinuric approach with mycophenolate mofetil fully suppresses progressive nephropathy of experimental animals. J Am Soc Nephrol 10: 1542–9, 1999.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Taal, M.W., Brenner, B.M. (2002). How to Achieve Maximal Renoprotection in Non-Diabetic Chronic Renal Disease. In: Avram, M.M. (eds) Improving Prognosis for Kidney Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1848-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1848-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6164-5

  • Online ISBN: 978-94-017-1848-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics