Skip to main content

Homocysteine and Family History of Coronary Artery Disease

  • Chapter
Homocysteine and Vascular Disease

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 230))

  • 137 Accesses

Summary

The risk of developing coronary artery disease (CAD) or atherosclerosis in other vascular beds can be estimated by determining the presence of conventional risk factors (age, gender, family history, plasma lipids and lipoproteins, diabetes, hypertension and cigarette smoking). Homocysteine is an emerging cardiovascular risk factor. As seen in previous chapters, plasma levels of homocysteine are determined by environmental factors (nutritional, gender, age, vitamin status, renal function) and by genetics. Homocysteine might thus represent a partly heritable cardiovascular risk factor and, in selected individuals, a more complete study of the family may allow the identification of asymptomatic patients at risk. Mutations at genes encoding for enzymes that metabolize homocysteine, such as the methylenetetrahydrofolate reductase (MTHFR) mutation at residue 677 may represent a disease susceptibility gene for the development of CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The Expert Panel. Summary of the Second report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel II). J Am Med Ass 1993; 269: 3015–3023

    Google Scholar 

  2. Barrett-Connor E. Khaw K. Family history of heart attack as an independent predictor of death due to cardiovascular disease. Circulation. 1984; 69: 1065–9

    Article  PubMed  CAS  Google Scholar 

  3. Khaw KT. Barrett-Connor E. Family history of heart attack: a modifiable risk factor. Circulation. 1986; 74: 239–244

    Article  PubMed  CAS  Google Scholar 

  4. Dammerman M, Breslow JL. Genetic basis of lipoprotein disorders. Circulation 1995; 91: 505–511

    Article  PubMed  CAS  Google Scholar 

  5. Goldstein JL, Schrott HG, Hazzard WR, Bierman EL, Motulsky AG. Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest 1973; 52: 1544–1568

    Article  PubMed  CAS  Google Scholar 

  6. Harker LA, Slichter SJ, Scott CR, Ross R. Homocystinemia. Vascular injury and arterial thrombosis. N Engl J Med. 1974; 291: 537–543

    Article  PubMed  CAS  Google Scholar 

  7. Kang SS, Wong PWK, Norusis M. Homocysteinemia secondary to folate deficiency. Metabolism 1987; 36: 458–462

    Article  PubMed  CAS  Google Scholar 

  8. McCully KS. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 1969; 56: 111–128

    PubMed  CAS  Google Scholar 

  9. Mudd SH, Levy HL, Skovby F. Disorders of transsulfuration, in: Scriver CR, Beaudet AL, Sly WS, Valle D. (eds):The Metabolic Basis of Inherited Disease 6th ed. McGraw-Hill Book Co., New York 1989: 693–734

    Google Scholar 

  10. Schimke RN, McKusick VA, Huang T, Pollack AD. Homocystinuria. JAMA 1965; 193: 711–719

    Article  CAS  Google Scholar 

  11. Genest J Jr, Martin-Munley SS, McNamara JR, Ordovas JM, Jenner JL, Meyers RH, Silberman SR, Wilson PWF, Salem DN, Schaefer EJ. Familial Lipoprotein Disorders in Patients With Premature Coronary Artery Disease. Circulation 1992; 85: 2025–2033

    Article  PubMed  Google Scholar 

  12. Genest J Jr, McNamara JR, Upson B, Salem DN, Ordovas JM, Schaefer EJ, Malinow MR. Prevalence of familial hyperhomocyst(e)inemia in men with premature coronary artery disease. Arterioscler Thromb 1991; 11: 1129–1136

    Article  PubMed  Google Scholar 

  13. Christensen B, Frosst P, Lussier-Cacan S, Selhub J, Goyette P, Rosenblatt DS, Genest J Jr, Rozen R. Correlation of a common mutation in methylenetetrahydrofolate reductase gene with plasma homocysteine in patients with premature coronary artery disease. Arterioscler Thromb Vasc Biol 1997; 17: 569–573

    Article  PubMed  CAS  Google Scholar 

  14. Franken DG, Boers GHJ, Blom HJ, Cruysberg JR, Trijbels FJM, Hamel BC. Prevalence of familial mild hyperhomocysteinemia. Atheroscler 1996; 125: 71–80

    Article  CAS  Google Scholar 

  15. Williams RR, Malinow MR, Hunt SC et al. Hyperhomocyst(e)inemia in Utah siblings with early coronary artery disease. Coronary Art Dis 1990; 1: 681–5

    Article  Google Scholar 

  16. Ross R. The pathogenesis of atherosclerosis — an update. N Engl J Med 1986; 314: 488–500

    Article  PubMed  CAS  Google Scholar 

  17. Thelle DS, Forde OH. The cardiovascular study in Finnmark county: coronary risk factors and the occurrence of myocardial infarction in first degree relatives and in subjects of different ethnic origin. Am J Epidemiol 1979; 110: 708–15

    PubMed  CAS  Google Scholar 

  18. Levine RS, Hennekens CH, Rosner B, Gourley J, Gelband H, Jesse MJ. Cardiovascular risk factors among children of men with premature myocardial infarction. Public Health Reports 1981; 96: 58–60

    PubMed  CAS  Google Scholar 

  19. Tonstad S, Refsum H, Sivertsen M, Christophersen B, Ose L, Ueland PM. Relation of total homocysteine and lipid levels in children to premature cardiovascular deaths in male relatives. Pediatric Res. 1996; 40: 47–52

    Article  CAS  Google Scholar 

  20. Tonstad S, Refsum H, Ueland PM. Association between plasma total homocysteine and parental history of cardiovascular disease in children with familial hypercholesterolemia. Cire 1997; 96: 1803–1808

    CAS  Google Scholar 

  21. Dalery K, Lussier-Cacan S, Selhub J, Davignon J, Latour Y, Genest J Jr. Homocysteine and coronary artery disease in French Canadian subjects: relation with vitamins B12, B6, pyridoxal phosphate, and folate. Am J Cardiol 1995; 75: 1107–1111

    Article  PubMed  CAS  Google Scholar 

  22. Wu LL, Wu J, Hunt SC, James BC, Vincent GM, Williams RR, Hopkins PN. Plasma homocyst(e)ine as a risk factor for early familial coronary artery disease. Clin Chem 1994; 40: 552–561

    PubMed  CAS  Google Scholar 

  23. Fermo I, Vigano’ D’Angelo S, Paroni R, Mazzola G, Calori G, D’Angelo A. Prevalence of moderate hyperhomocysteinemia in patients with early-onset venous and arterial occlusive disease. Ann Intern Med 1995; 123: 747–753

    PubMed  CAS  Google Scholar 

  24. Selhub J, Jacques PF, Wilson PWF, Rush D, Rosenberg IH. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 1993; 270: 2693–2698

    Article  PubMed  CAS  Google Scholar 

  25. Berg K, Malinow MR, Kierulf P, Upson B. Population variation and genetics of plasma homocyst(e)ine levels. Clin Genet 1992; 41: 315–321

    Article  PubMed  CAS  Google Scholar 

  26. Lussier-Cacan S, Davignon J, Selhub J, Genest J Jr. Plasma homocyst(e)ine levels in a population selected for health: relationship with vitamins B12, B6, pyridoxal phosphate and folate and cardiovascular risk factors. Circulation 1993; 88: 1563

    Google Scholar 

  27. Mayer EL, Jacobsen DW, Robinson K. Homocysteine and coronary atherosclerosis. J Am Coll Cardiol 1996; 27: 517–527

    Article  PubMed  CAS  Google Scholar 

  28. Refsum H, Ueland PM, Nygard O, Vollset SE. Homocysteine and cardiovascular disease. Annu Rev Med 1998; 49: 31–62

    Article  PubMed  CAS  Google Scholar 

  29. Ubbink JB, Vermaak WJ, van der Merwe A, Becker PJ. Vitamin B-12, vitamin B-6, and folate nutritional status in men with hyperhomocysteinemia. Am J Clin Nutr 1993; 57: 4753

    Google Scholar 

  30. Kang SS, Wong PWK, Susmano A, Sora J, Norusis M, Ruggie N. Thermolabile methylenetetrahydrofolate reductase: an inherited risk factor for coronary artery disease. Am J Hum Genet 1991; 48: 536–545

    PubMed  CAS  Google Scholar 

  31. Reed T, Malinow MR, Christian JC, Upson B. Estimates of heritability of plasma homocyst(e)ine levels in aging adult male twins. Clin Genet 1991; 39: 425–428

    Article  PubMed  CAS  Google Scholar 

  32. Naughten ER. Yap S. Mayne PD. Newborn screening for homocystinuria: Irish and world experience. European Journal of Pediatrics. 1998;157 Suppl 2: S84–7

    Google Scholar 

  33. Kraus JP, Williamson CL, Firgaira FA, Yang-Feng IL, Munke M, Francke U, Rosenbert LE. Cloning and screening with nanogram amounts of immunopurified mRNAs: cDNA cloning and chromosomal mapping of cystathionine beta-synthase and the beta subunit of propionyl-CoA carboxylase. Proc Natl Acad Sci USA 1986; 83: 2047–2051.

    Article  PubMed  CAS  Google Scholar 

  34. Tsai MY, Gard U, Key NS, Hanson NQ, Suh A, Schwichtenberg K. Molecular and biochemical approaches in the identification of heterozygotes for homocystinuria. Atheroscler 1996; 122: 69–77

    Article  CAS  Google Scholar 

  35. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJH, den Heijer M, Kluijtmans LAJ, van den Heuvel LP, Rozen R. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nature Genetics 1995; 10: 111–113

    Article  PubMed  CAS  Google Scholar 

  36. Chen LH, Liu ML, Hwang HY, Chen LS, Korenberg J, Shane B. Human methionine synthase. cDNA cloning, gene localization, and expression. J Biol Chem 1997; 272: 36 2834

    Google Scholar 

  37. Tsai MY, Bignell M, Schwichtenberg K, Hanson NQ. High prevalence of a mutation in the cystathionine beta-synthase gene. Amer J Human Gen 1996; 59: 1262–1267

    CAS  Google Scholar 

  38. Tsai MY, Hanson NQ, Bignell MK, Schwichtenberg KA. Simultaneous detection and screening of T833C and G919A mutations of the cystathionine beta-synthase gene by single-strand conformational polymorphism. Clin Biochem 1996; 29: 473–477

    Article  PubMed  CAS  Google Scholar 

  39. Tsai MY, Wong PW, Gard U, Hanson NQ, Schwichtenberg K. Identification of a splice site mutation in the cystathionine beta-synthase gene resulting in variable and novel splicing defects of pre-mRNA. Biochem & Molec Med 1997; 61: 9–15

    Article  CAS  Google Scholar 

  40. Kluijtmans LA, Blom HJ, Boers GH, van Oost BA, Trijbels FJ, van den Heuvel LP. Two novel missense mutations in the cystathionine beta-synthase gene in homocystinuric patients. Human Genetics 1995; 96: 249–250

    Article  PubMed  CAS  Google Scholar 

  41. Kluijtmans LA, Boers GH, Trijbels FJ, van Lith-Zanders HM. van den Heuvel LP, Blom HJ. A common 844INS68 insertion variant in the cystathionine beta-synthase gene. Biochemical & Molecular Medicine. 1997; 62: 23–25

    Article  CAS  Google Scholar 

  42. Kluijtmans LA, Boers GH, Verbruggen B, Trijbels FJ, Novakova IR, Blom HJ. Homozygous cystathionine beta-synthase deficiency, combined with factor V Leiden or thermolabile methylenetetrahydrofolate reductase in the risk of venous thrombosis. Blood. 1998; 91: 2015–2018

    PubMed  CAS  Google Scholar 

  43. McGill JJ, Mettler G, Rosenblatt DS, Scriver CR. Detection of heterozygotes for recessive alleles. Homocysteinemia: paradigm of pitfalls in phenotypes. Am J Med Genet 1990; 36: 45–52

    Article  PubMed  CAS  Google Scholar 

  44. Kraus JP. Biochemistry and molecular genetics of cystathionine beta-synthase deficiency. European Journal of Pediatrics. 1998; 157: 550–3

    Article  Google Scholar 

  45. Goyette P, Sumner JS, Milos R, Duncan AMV, Rosenblatt DS, Matthews RG, Rozen R. Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nature Genet 1994; 7: 195–200

    Article  PubMed  CAS  Google Scholar 

  46. Kang SS, Passen EL, Ruggie N, Wong PWK, Sora H. Thermolabile defect of methylenetetrahydrofolate reductase in coronary artery disease. Circulation 1993; 88: 1463 1469

    Google Scholar 

  47. Kluijtmans LAJ, van den Heuvel LPWJ, Boers GHJ, Frosst P, Stevens EM, van Oost BA, den Heijer M, Trijbels FJ, Rozen R, Blom HJ. Molecular genetic analysis in mild hyperhomocysteinemia: a common mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for cardiovascular disease. Am J Hum Genet 1996; 58: 35–41

    PubMed  CAS  Google Scholar 

  48. Harmon DL, Woodside JV, Yarnell JW, McMaster D, Young IS, McCrum EE, Whitehead AS, Evans AE. The common ‘thermolabile’ variant of methylenetetrahydrofolate reductase is a major determinant of mild hyperhomocysteinemia. Quarterly J Med 1996; 89: 571–577

    Article  CAS  Google Scholar 

  49. Dawson PA, Cochran DA, Emmerson BT, Kraus JP, Dudman NP, Gordon RB. Variable hyperhomocysteinemia phenotype in heterozygotes for the Gly307Ser mutation in cystathionine beta-synthase. Australian & New Zealand Journal of Medicine. 1996; 26: 180–5

    Article  CAS  Google Scholar 

  50. Dawson PA, Cox AJ, Emmerson BT, Dudman NP, Kraus JP, Gordon RB. Characterisation of five missense mutations in the cystathionine beta-synthase gene from three patients with B6-nonresponsive homocystinuria. Eur J Human Gen 1997; 5: 15–21

    CAS  Google Scholar 

  51. Sebastio G, Sperandeo MP, Panico M, de Franchis R, Kraus JP, Andria G. The molecular basis of homocystinuria due to cystathionine beta-synthase deficiency in Italian families, and report of four novel mutations. American J Human Gen 1995; 56: 1324–1333

    CAS  Google Scholar 

  52. Sperandeo MP, Candito M, Sebastio G, Rolland MO, Turc-Carel C, Giudicelli H, Dellamonica P, Andria G. Homocysteine response to methionine challenge in four obligate heterozygotes for homocystinuria and relationship with cystathionine beta-synthase mutations. J lnher Metab Dis 1996; 19: 351–35

    Article  CAS  Google Scholar 

  53. Wilcken DE, Wang XL, Sim AS, McCredie RM. Distribution in healthy and coronary populations of the methylene tetrahydrofolate reductase (MTHFR) C677T mutation. Atheroscler Thromb Vasc Biol 1996; 16: 878–882

    Article  CAS  Google Scholar 

  54. Leclerc D, Campeau E, Goyette P, Adjalla CE, Christensen B, Ross M, Eydoux P, Rosenblatt DS, Rozen R, Gravel RA. Human methionine synthase: cDNA cloning and identification of mutations in patients of the cblG complementation group of folate/cobalamin disorders. Hum Mol Genet 1996; 5: 1867–1874

    Article  PubMed  CAS  Google Scholar 

  55. Leclerc D, Wilson A, Dumas R, Gafuik C, Song D, Watkins D, Heng HH, Rommens JM, Scherer SW, Rosenblatt DS, Gravel RA. Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. PNAS 1998; 95: 3059–3064

    Article  PubMed  CAS  Google Scholar 

  56. Malinow MR, Nieto FJ, Kruger WD, Duell PB, Hess DL, Gluckman RA, Block PC, Holzgang CR, Anderson PH, Seltzer D, Upson B, Lin QR. The effects of folic acid supplementation on plasma total homocysteine are modulated by multivitamin use and methylenetetrahydrofolate reductase genotypes. Arterioscler, Thromb Vasc Biol. 1997; 17: 1157–1162

    Article  CAS  Google Scholar 

  57. Hopkins PN, Wu LL, Wu J, Hunt SC, James BC, Vincent GM, Williams RR. Higher plasma homocyst(e)ine and increased susceptibility to adverse effects of low folate in early familial coronary artery disease. Arterioscler Thromb Vasc Biol 1995; 15: 1314–1320

    Article  PubMed  CAS  Google Scholar 

  58. Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute

    Google Scholar 

  59. Boers GHJ, Smals AGH, Trijbels FJM, Fowler B, Bakkeren JAJM, Schoonderwaldt HC, Kleijer WJ, Kloppenborg PWC. Heterozygosity for homocystinuria in premature peripheral and cerebral occlusive arterial disease. N Engl J Med 1985; 313: 709–715

    Article  PubMed  CAS  Google Scholar 

  60. Malinow MR, Duell PB, Hess DL, Anderson PH, Kruger WD, Phillipson BE, Gluckman RA, Block PC, Upson BM. Reduction of plasma homocyst(e)ine levels by breakfast cereal fortified with folic acid in patients with coronary heart disease. N Engl J Med 1998; 338: 1009–1015

    Article  PubMed  CAS  Google Scholar 

  61. McCully KS. Homocysteine and vascular disease. Nature Med. 1996; 2: 386–389

    Article  PubMed  CAS  Google Scholar 

  62. Nygard O, Vollset SE, Refsum H, Stensvold I, Tverdal A, Nordrehaug JE, Ueland PM, Kvale G. Total plasma homocysteine and cardiovascular risk profile. The Hordaland homocysteine study. JAMA 1995; 274: 1526–1533

    Article  PubMed  CAS  Google Scholar 

  63. Schwartz SM, Siscovick DS, Malinow MR, Rosendaal FR, Beverly RK, Hess DL, Psaty BM, Longstreth WT Jr., Koepsell TD, Raghunathan TE, Reitsma PH. Myocardial infarction in young women in relation to plasma total homocysteine, folate, and a common variant in the methylenetetrahydrofolate reductase gene. Circulation 1997; 96: 412–417

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Genest, J. (2000). Homocysteine and Family History of Coronary Artery Disease. In: Robinson, K. (eds) Homocysteine and Vascular Disease. Developments in Cardiovascular Medicine, vol 230. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1789-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1789-2_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5431-9

  • Online ISBN: 978-94-017-1789-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics