Skip to main content
  • 177 Accesses

Abstract

In Chapter 2 the theories of creep have been explained and applied to the simple cases of stress relaxation in a bolt and creep in a thin-walled cylinder. However, most components operating at elevated temperature experience more complex stress redistribution as creep strains accumulate within the body. The process of stress redistribution continues until a steady state stress distribution is approached at long times. Although, in general, numerical computation is required to follow this behaviour, in many instances it is possible to obtain the overall response of a structure by using analytical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Penny, R. K. and Marriott, D.L. (1971) Design for Creep, McGraw-Hill, London.

    Google Scholar 

  2. Boyle, J.T. and Spence, J. (1983) Stress Analysis for Creep, Butterworths, London.

    Google Scholar 

  3. Odqvist, F.K.G. (1966) Mathematical Theory of Creep and Creep Rupture, Oxford University Press, Oxford.

    Google Scholar 

  4. Hill, R. (1950) The Mathematical Theory of Plasticity, Oxford University Press, Oxford.

    Google Scholar 

  5. Calladine, C.R. (1969) Time-scales for redistribution of stress in creep of structures. Proc. R. Soc. Land. A, 309, 363 – 375.

    Article  Google Scholar 

  6. Ainsworth, R.A. (1979) Prediction of the deformation of creep ductile components using reference stress techniques, unpublished notes.

    Google Scholar 

  7. 7. Engel, U. and Ilschner, B. (1985) Application of the reference concept to the creep deformation of a tube subjected to mechanical and thermal loading. Res. Mech.,14, 225–244.

    Google Scholar 

  8. Leckie, F.A. and Hayhurst, D.R. (1974) Creep rupture of structures. Proc. R. Soc. Lond. A, 340, 323 – 347.

    Article  CAS  Google Scholar 

  9. Goodall, I.W., Cockroft, R.D.H. and Chubb, E.J. (1975) An approximate description of the creep rupture of structures. Int. J. Mech. Sci., 17, 351 – 360.

    Article  Google Scholar 

  10. Hayhurst, D.R. (1973) Stress redistribution and rupture due to creep in a uniformly thin plate containing a circular hole. J. Appl. Mech., 40, 244 – 250.

    Article  Google Scholar 

  11. Hall, F.R. and Hayhurst, D.R. (1991) Continuum damage mechanics modelling of high temperature deformation and failure in a pipe weldment. Proc. R. Soc. Lond. A, 433, 405 – 421.

    Article  Google Scholar 

  12. Wang, Z.P. and Hayhurst, D.R. (1992) The use of super-computer modelling of high-temperature failure in pipe weldments to optimise weld and heat affected zone materials property selection, Sheffield University Report.

    Google Scholar 

  13. Ainsworth, R.A. and Goodall, I.W. (1976) Creep life predictions for structures subject to variable loading. Int. J. Solids Struct. 12, 501 – 515.

    Article  Google Scholar 

  14. Budden, P.J. (1982) The sensitivity of the creep rupture of a pressurized cylinder to variations in the multiaxial rupture surface, CEGB Report TPRD/B/0106/N82.

    Google Scholar 

  15. Hayhurst, D.R. (1972) Creep rupture under multi-axial states of stress. J. Mech. Phys. Solids, 20, 381 – 390.

    Article  Google Scholar 

  16. Goodall, I.W. and Cockroft, R.D.H. (1973) On bounding the life of structures subjected to steady load and operating within the creep range. Int. J. Mech. Sri., 15, 251 – 263.

    Article  Google Scholar 

  17. Goodall, I.W., Leckie, F.A., Ponter, A.R.S. and Townley, C.H.A. (1979) The development of high temperature design methods based on reference stresses and bounding theorems. ASME, J, Eng. Mat. Tech., 101, 349 – 355.

    Article  CAS  Google Scholar 

  18. Goodall, I.W. and Ainsworth, R.A. (1985) Structures at elevated temperatures: how long will they last. Int. J. Press. Vessels Pip., 21, 285 – 297.

    Article  Google Scholar 

  19. Ainsworth, R.A. (1991) Creep life estimates for defective structures, in Proc. Creep in Structures 4th Symp., Krakow, Poland, (ed. M. Zyczkowski), Springer-Verlag, Berlin, pp. 269 – 277.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Webster, G.A., Ainsworth, R.A. (1994). Stress analysis of uncracked bodies. In: High Temperature Component Life Assessment. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1771-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1771-7_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4012-1

  • Online ISBN: 978-94-017-1771-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics