Skip to main content

Processes of deformation and fracture at high temperatures

  • Chapter
High Temperature Component Life Assessment

Abstract

In this chapter the processes of deformation and fracture that occur in metallic materials at elevated temperatures are presented. The nature of creep is described and laws introduced for characterizing the shape of the creep curve. The influence of microstructure, stress and temperature on the modes of deformation and failure are considered and the role of creep parameters in correlating and extrapolating creep data for design purposes discussed. Procedures are explained for dealing with variable stress and temperature conditions in terms of mechanical equations of state. Methods of applying equivalent stress criteria to complex stress loading situations are described. In addition, damage mechanics concepts are introduced for coping with progressive material deterioration. Finally, cumulative damage models are presented for describing creep—fatigue interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Webster, G.A. (1966) A widely applicable dislocation model for creep. Phil. Mag., 14, 775–783.

    Article  CAS  Google Scholar 

  2. Dom, J.E. (ed.) (1961) Mechanical Behaviour of Materials at Elevated Temperatures, McGraw-Hill, Inc., New York.

    Google Scholar 

  3. Kennedy, A.J. (1962) Processes of Creep and Fatigue in Metals, Wiley, New York.

    Google Scholar 

  4. Garofalo, F. (1965) Fundamentals of Creep and Creep-Rupture in Metals, Macmillan, New York.

    Google Scholar 

  5. McLintock, F.A. and Argon, A.S. (1966) Mechanical Behaviour of Materials, Addison-Wesley, Massachusetts.

    Google Scholar 

  6. Gemmill, M.G. (1966) The Technology and Properties of Ferrous Alloys for High Temperature Use,Newnes, London.

    Google Scholar 

  7. Gittus, J. (1975) Creep, Viscoelasticity and Creep Fracture in Solids, Applied Science, London.

    Google Scholar 

  8. Frost, H.J. and Ashby, M.F. (1982) Deformation-Mechanism Maps, Pergamon Press, Oxford.

    Google Scholar 

  9. Riedel, H. (1987) Fracture at High Temperatures, Springer-Verlag, Berlin.

    Google Scholar 

  10. Cadek, J. (1988) Creep in Metallic Materials, Elsevier, Amsterdam.

    Google Scholar 

  11. Johnson, W.G. and Gilman, J.J. (1959) Dislocation velocities, dislocation densities and plastic flow in lithium fluoride crystals. J. App Phys, 30 (2), 129–144.

    Article  Google Scholar 

  12. Haasen, P. (1964) III Dislocation mobility and generation, dislocation motion and plastic yield of crystals. Discuss. Faraday Soc., 38, 191–200.

    Article  Google Scholar 

  13. Webster, G.A., Cox, A.P.D. and Dorn, J.E. (1969) A relationship between transient and steady-state creep at elevated temperatures. Met. Sei, J., 3, 221–225.

    Google Scholar 

  14. Evans, R.W. and Wilshire, B. (1985) Creep of Metals and Alloys, Institute of Metals, London.

    Google Scholar 

  15. Ashby, M.F., Gandhi, C. and Taplin, D.M.R. (1979) Fracture-mechanism maps and their construction for FCC metals and alloys. Acta Metall., 27, 699–729.

    Article  CAS  Google Scholar 

  16. Gandhi, C and Ashby, M.F. (1979) Fracture-mechanism maps for materials which cleave: FCC, BCC and HCP metals and ceramics. ibid., 1565–1602.

    Google Scholar 

  17. Gittus, J. (1981) Cavities and Cracks in Creep and Fracture, Applied Science, London.

    Google Scholar 

  18. Monkman, F.C. and Grant, N.J. (1956) An empirical relationship between rupture life and minimum creep rate in creep-rupture tests. Proc. Am. Soc. Testing Materials, 56, 593–620.

    Google Scholar 

  19. Finnie, I. and Heller, W.R. (1959) Creep of Engineering Materials, McGraw-Hill, New York.

    Google Scholar 

  20. Lubahn, J.D. and Felgar, R.P. (1961) Plasticity and Creep of Metals, Wiley, New York.

    Google Scholar 

  21. Johnson, A.E., Henderson, J. and Khan, B. (1962) Complex Stress Creep, Relaxation and Fracture of Metallic Alloys, HMSO, London.

    Google Scholar 

  22. Odqvist, F.K.G. (1966) Mathematical Theory of Creep and Creep Rupture, Oxford University Press, Oxford.

    Google Scholar 

  23. Rabotnov, Yu N. (1969) Creep Problems in Structural Members, (ed. F.A. Leckie), North Holland, Amsterdam.

    Google Scholar 

  24. Penny, R.K. and Marriott, D.L. (1971) Design for Creep, McGraw-Hill, London.

    Google Scholar 

  25. Boyle, J.T. and Spence, J. (1983) Stress Analysis for Creep, Butterworths, London.

    Google Scholar 

  26. Williams, J.G. (1973) Stress Analysis of Polymers, Longman, London.

    Google Scholar 

  27. Cocks, A.C.F. and Ashby, M.F. (1980) Intergranular fracture during power-law creep under multiaxial stress. Met. Sci., 14, 395–402.

    Article  Google Scholar 

  28. Smith, D.J. and Webster, G.A. (1985) Fracture mechanics interpretations of multiple-creep cracking using damage-mechanics concepts. Mater. Sci. Technol., 1, 366–372.

    Article  CAS  Google Scholar 

  29. Kachanov, L.M. (1986) Introduction to Continuum Damage Mechanics, Kluwer Academic Publishers, Dordrecht.

    Book  Google Scholar 

  30. Rice, J.R. and Tracey, D.M. (1969) On the ductile enlargement of voids in triaxial stress fields. J. Mech. Phys. Solids, 17, 201–217.

    Article  Google Scholar 

  31. Forrest, P.J. (1962) Fatigue of Metals, Addison-Wesley, Reading, USA.

    Google Scholar 

  32. Forsyth, P.J.E. (1969) The Physical Basis of Metal Fatigue, Elsevier, New York.

    Google Scholar 

  33. Fuchs, H.O. and Stephens, R.I. (1980) Metal Fatigue in Engineering, Wiley, New York.

    Google Scholar 

  34. Hertzberg, R.W. (1983) Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York.

    Google Scholar 

  35. Bressers, J. (ed.) (1981) Creep and Fatigue in High Temperature Alloys, Applied Science, Barking, UK.

    Google Scholar 

  36. Skelton, R.P. (ed.) (1983) Fatigue at High Temperature, Applied Science, London.

    Google Scholar 

  37. Skelton, R.P. (ed.) (1987) High Temperature Fatigue: Properties and Prediction, Elsevier Applied Science, London.

    Google Scholar 

  38. Coffin, L.F. (1973) Fatigue at high temperature, in Fatigue at Elevated Temperatures, ASTM STP 520, pp. 5–34.

    Chapter  Google Scholar 

  39. Manson, S.S. (1973) A challenge to unify treatment of high temperature fatigue — a partisan proposal based on strain range partitioning in fatigue at elevated temperatures, in Fatigue at Elevated Temperatures, ASTM STP 520, pp. 744–775.

    Chapter  Google Scholar 

  40. Viswanathan, R. (1989) Damage Mechanisms and Life Assessment of High Temperature Components, ASM International, Metals Park Ohio.

    Google Scholar 

  41. Lemaitre, J. and Chaboche, J.L. (1990) Mechanics of Solid Materials, Cambridge University Press, Cambridge.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Webster, G.A., Ainsworth, R.A. (1994). Processes of deformation and fracture at high temperatures. In: High Temperature Component Life Assessment. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1771-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1771-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4012-1

  • Online ISBN: 978-94-017-1771-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics