Skip to main content

Tableaux for Intuitionistic Logics

  • Chapter
Book cover Handbook of Tableau Methods

Abstract

Despite the fact that for many years intuitionistic logic has served its function primarily in relation to foundational questions in mathematics, there has been a significant revival of interest over the last couple of decades stimulated by the application of intuitionistic formalisms in computer science (1982) . It is beyond the scope of this chapter to comment on these applications in detail which, broadly speaking, either exploit formalisations of the intuitionistic meaning of general mathematical abstractions as programming logics [Martin-Löf, 1984; Martin-Löf, 1996; Constable et al., 1986] , or exploit the similarity of systems of formal intuitionistic proofs under cut-elimination to systems of typed lambda terms under various forms of reduction (e.g. [Howard, 1980; Girard, 1989; Coquand, 1990]) .1 Both types of application rely on the rich proof theory possessed by intuitionistic formalisms in comparison with their classical counterparts.2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. L. Bell. Toposes and Local Set Theories: an introduction, volume 14 of Oxford Logic Guides. OUP, Oxford, 1990.

    Google Scholar 

  2. E. W. Beth. The Foundations of Mathematics. North-Holland, Amsterdam, 1959.

    Google Scholar 

  3. W. Bibel. Computationally improved versions of Herbrand’s Theorem. In J. Stern, editor, Proceedings of the Herbrand Symposium, Logic Colloquium ’81, pages 11–28, Amsterdam, 1982. North-Holland Publishing Co.

    Chapter  Google Scholar 

  4. Constable et al.,1986) R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, F. F. Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendier, P. Panandagen, J. T. Sasaki, and S. F. Smith. Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

    Google Scholar 

  5. T. Coquand. Metamathematical investigations of a calculus of constructions. In P. Odifreddi, editor, Logic and Computer Science, volume 31 of APIC, pages 91–122. Academic Press, London, 1990.

    Google Scholar 

  6. R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. Journal of Symbolic Logic, 57(3): 795–807, 1992.

    Google Scholar 

  7. M. Fitting. Intuitionistic Logic, Model Theory, and Forcing. North-Holland, 1969.

    Google Scholar 

  8. M. Fitting. First-order modal tableaux. Journal of Automated Reasoning, 4: 191–213, 1988.

    Article  Google Scholar 

  9. G. Gentzen. Untersuchungen über das logische Schließen. Mathematische Zeitschrift, 39:176–210, 405–431, 1934–1935, 1934–35. English translation in M.E. Szabo The Collected Papers of Gerhard Gentzen, North-Holland, Amsterdam, 1969.

    Google Scholar 

  10. J.-Y. Girard. Proof Theory and Logical Complexity, volume I of Studies in Proof Theory. Bibliopolis, 1987.

    Google Scholar 

  11. J.-Y. Girard. Proofs and Types. Cambridge University Press, Cambridge, 1989.

    Google Scholar 

  12. T. Griffin. A formulas-as-types notion of control. In Proc. of the Seventeenth Annual Symp. on Principles of Programming Languages, pages 47–58, 1990.

    Google Scholar 

  13. J. Herbrand. Investigations in proof theory. In J. van Heijenoort, editor, From Frege to Gödel: A Source Book of Mathematical Logic, pages 525–581. Harvard University Press, Cambridge, MA, 1967.

    Google Scholar 

  14. A. Heyting. Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der Preussischen Akademie von Wissenschaften, 1930.

    Google Scholar 

  15. A. Heyting. Intuitionism, An Introduction. North-Holland, Amsterdam, rev. 2nd edition, 1956.

    Google Scholar 

  16. W. A. Howard. The formulae-as-types notion of construction. In J. P. Hindley and J. R. Seldin, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda-calculus and Formalism, pages 479–490. Academic Press, London, 1980.

    Google Scholar 

  17. J. Hudelmaier. Bounds for cut-elimination in Intuitionistic propositional logic. Archive for Mathematical Logic, 31: 331–354, 1992.

    Article  Google Scholar 

  18. J. Hudelmaier. An O(nlogn) -space decision procedure for intuitionistic propositional logic. Journal of Logic and Computation, 3(1): 63–76, 1993.

    Google Scholar 

  19. S. C. Kleene. Introduction to Metamathematics. North-Holland, Amsterdam, 1952. (Kleene, 1952b1 S. C. Kleene. Permutability of inferences in Gentzen’s calculi LK and LJ. Memoirs of the American Mathematical Society, 10: 1–26, 1952.

    Google Scholar 

  20. S. Kripke. Semantical analysis of intuitionistic logic I. In J. Crossley and M. Dummett, editors, Formal Systems and Recursive Functions, pages 92–129. North-Holland, Amsterdam, 1963.

    Google Scholar 

  21. P. Lincoln, A. Scedrov, and N. Shankar. Linearizing intuitionistic implication. In Sixth annual IEEE symposium on Logic in Computer Science: Proceedings, Amsterdam 1991, pages 51–62. IEEE Computer Society Press, Los Alamitos, California, 1991.

    Chapter  Google Scholar 

  22. S. Maehara. Eine Darstellung der intuitionistische Logik in der klassischen. Nagoya Mathematical Journal, 7: 45–64, 1954.

    Google Scholar 

  23. Mints, 1990) G. Mints. Gentzen-type systems and resolution rule, part i: Propositional logic. In Proceedings International Conference on Computer Logic, COLOG’88, Tallinn, USSR,volume 417 of Lecture Notes in Computer Science,pages 198–231, Berlin, 1990. Springer-Verlag.

    Google Scholar 

  24. Mints, 1993) G. Mints. Gentzen-type systems and resolution rule, part ii: Predicate logic. In Proceedings ASL Summer Meeting, Logic Colloquium ’80 Helsinki, Finland,volume 2 of Lecture Notes in Logic,pages 163–190, berlin, 1993. Springer-Verlag.

    Google Scholar 

  25. P. Martin-Löf. Constructive mathematics and computer programming. In L.J. Cohen, editor, Proceedings of the 6th International Congress for Logic, Methodology and the Philosophy of Science, 1979, pages 153–175, Amsterdam, 1982. North-Holland.

    Google Scholar 

  26. P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984. Notes by Giovanni Sambin of a Series of Lectures given in Padua, June 1980.

    Google Scholar 

  27. P. Martin-Löf. On the meaning of the logical constants and the justification of the logical laws. Nordic Journal of Philosophical Logic, 1(1): 11–60, 1996.

    Google Scholar 

  28. Miglioli et al.,1994) P. Miglioli, U. Moscato, and M. Ornaghi. An Improved Refutation System for Intuitionistic Predicate Logic. Journal Automated Reasoning,13:361–373, 1994.

    Google Scholar 

  29. C. Murthy. An evaluation semantics for classical proofs. In Proc. of Sixth Symp. on Logic in Comp. Sci., pages 96–109. IEEE, Amsterdam, The Netherlands, 1991.

    Google Scholar 

  30. P. Odifreddi, editor. Logic and Computer Science, volume 31 of The Apic Studies in Data Processing. Academic Press, London, 1990.

    Google Scholar 

  31. H.-J. Ohlbach. Semantics-based translation methods for modal logics. Journal of Logic and Computation, 1(51): 691–746, 1990.

    Google Scholar 

  32. Parigot, 1992) M. Parigot..\p-calculus: an algorithmic interpretation of classical natural deduction. In Proc. LPAR ’82, volume 624 of LNCS,pages 190–201, Berlin, 1992. Springer Verlag.

    Google Scholar 

  33. L. Pinto and R. Dyckhoff. Loop-free construction of counter-models for intuitionistic propositional logic. In Behara, Fritsch, and Lintz, editors, Symposia Gaussiana, Conf A, pages 225–232. Walter de Gruyter & Co, 1995.

    Google Scholar 

  34. D. J. Pym and L. A. Wallen. Investigations into proof-search in a system of first-order dependent function types. In M.E. Stickel, editor, Tenth Conference on Automated Deduction, Lecture Notes in Computer Science 449, pages 236–250. Springer-Verlag, 1990.

    Google Scholar 

  35. J. A. Robinson. A machine oriented logic based on the resolution principle. J. Assoc. Comput. Mach., 12: 23–41, 1965.

    Article  Google Scholar 

  36. K. Schütte. Beweistheorie. Springer Verlag, Berlin, 1960.

    Google Scholar 

  37. Sahlin et al.,1992) D. Sahlin, T. Franzén, and S. Haridi. An Intuitionistic Predicate Logic Theorem Prover. Journal of Logic and Computation,2(5):619–656, 1992.

    Google Scholar 

  38. N. Shankar. Proof search in the intuitionistic sequent calculus. In D. Kapur, editor, Proceedings of 11th International Conference on Automated Deduction, volume 607 of Lecture Notes in AI, pages 522–536, Berlin, 1992. Springer Verlag.

    Google Scholar 

  39. J.R. Shoenfield. Mathematical Logic. Addison-Wesley, Reading, MA, 1967.

    Google Scholar 

  40. S. Schmitt and C. Kreitz. Converting non-classical matrix proofs into sequent-style systems. In M.A. McRobbie and J.K. Slaney, editors, Proceedings of 13th International Conference on Automated Deduction, volume 1104 of Lecture Notes in Al, pages 418–432, Berlin, 1996. Springer Verlag.

    Google Scholar 

  41. R. M. Smullyan. First-Order Logic. Springer-Verlag, New York, 1968.

    Book  Google Scholar 

  42. R. Statman. Intuitionistic logic is polynomial-space complete. Theor. Comp. Science, 9: 73–81, 1979.

    Article  Google Scholar 

  43. G. Takeuti. Proof Theory. North-Holland, Amsterdam, 1975.

    Google Scholar 

  44. A. S. Troelstra and D. van Dalen. Constructivism in Mathematics, volume 121 of Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam, 1988. Volumes I and II.

    Google Scholar 

  45. D. van Dalen. Intuitionistic Logic, volume Handbook of Philosophical Logic III, chapter 4, pages 225–339. Reidel, Dordrecht, 1986.

    Google Scholar 

  46. J. van Heijenoort. From Frege to Gödel: A Source Book of Mathematical Logic. Harvard University Press, Cambridge, MA, 1967.

    Google Scholar 

  47. N. N. Vorob’ev. The derivability problem in the constructive propositional calculus with strong negation. Doklady Akademii Nauk SSSR, 85: 689–692, 1952.

    Google Scholar 

  48. A. Waaler. Essential contractions in intuitionistic logic. Technical Report PRG-TR37–97, Oxford University Computing Laboratory, UK, 1997. Submitted for publication.

    Google Scholar 

  49. A. Waaler. A sequent calculus for intuitionistic logic with classical permutability properties. Technical Report PRG-TR-38–97, Oxford University Computing Laboratory, UK, 1997. Submitted for publication.

    Google Scholar 

  50. L. A. Wallen. Automated deduction in nonclassical logics. MIT Press, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Waaler, A., Wallen, L. (1999). Tableaux for Intuitionistic Logics. In: D’Agostino, M., Gabbay, D.M., Hähnle, R., Posegga, J. (eds) Handbook of Tableau Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1754-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1754-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5184-4

  • Online ISBN: 978-94-017-1754-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics