Skip to main content

Contraction Mappings and Extensions

  • Chapter
Handbook of Metric Fixed Point Theory

Abstract

A complete survey of all that has been written about contraction mappings would appear to be nearly impossible, and perhaps not really useful. In particular the wealth of applications of Banach’s contraction mapping principle is astonishingly diverse. We only attempt to touch on some of the high points of this profound and seminal development in metric fixed point theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. V. G. Angelov, A converse to a contraction mapping theorem in uniform spaces, Nonlinear Anal. 12 (1988), 989–996.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. S. Bae and S. Park, Remarks on the Caristi-Kirk fixed point theorem, Bull. Korean Math. Soc. 19 (1983), 57–60.

    MathSciNet  MATH  Google Scholar 

  3. S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales, Fund. Math. 3 (1922), 133–181.

    MATH  Google Scholar 

  4. A. T. Bharucha-Reid, Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc. 82 (1976), 641–657.

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Bessaga, On the converse of the Banach “fixed-point principle”, Colloq. Math. VII (1959), 41–43.

    MathSciNet  Google Scholar 

  6. A. Bielecki, Une remarque sur la méthode de Banach-Caccioppoli-Tikhonov dans la théorie des équations differentielles ordinaires, Bull. Acad. Polon Sci. Cl. III, 4 (1956), 261–264.

    MathSciNet  MATH  Google Scholar 

  7. L. M. Blumenthal, Distance Geometry, Oxford Univ. Press, London, 1953.

    Google Scholar 

  8. D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458–464.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Brezis and F. E. Browder, A general principle on ordered sets in nonlinear functional analysis, Advances in Math. 21 (1976), 355–364.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Brondsted, Fixed points and partial orders, Proc. Amer. Math. Soc. 60 (1976), 365–366.

    Google Scholar 

  11. F. E. Browder, On the convergence of successive approximations for nonlinear functional equations, Nederl. Akad. Wetensch. Ser. A71=Indag. Math. 30 (1968), 27–35.

    MathSciNet  Google Scholar 

  12. F. E. Browder, On a theorem of Caristi and Kirk, Fixed Point Theory and its Applications (S. Swaminathan, ed.), Academic Press, New York, 1976, pp. 23–27.

    Google Scholar 

  13. F. E. Browder, Remarks on fixed point theorems of contractive type, Nonlinear Anal. 3 (1979), 657–661.

    Article  MathSciNet  MATH  Google Scholar 

  14. T. A. Burton, Integral equations, implicit functions and fixed points, Proc. Amer. Math. Soc. 124 (1996), 2383–2390.

    Article  MATH  Google Scholar 

  15. T. A. Burton and C. Kirk, A fixed point theorem of Krasnoselskii-Shaefer type, Math. Nachr. 189 (1998), 23–31.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Caccioppoli, Una teorema generale sull’esistenza di elementi uniti in una transformazione funzionale, Ren. Accad. Naz Lincei 11 (1930), 794–799.

    MATH  Google Scholar 

  17. G. L. Cain, Jr., and M. Z. Nashed, Fixed points and stability for a sum of two operators in locally convex spaces, Pacific J. Math. 39 (1971), 581–592.

    MathSciNet  MATH  Google Scholar 

  18. J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241–251.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. M. Centore and E. R. Vrscay, Continuity of attractors and invariant measures for iterated function systems, Canad. Math. Bull. 37 (1994), 315–329.

    Article  MathSciNet  MATH  Google Scholar 

  20. S. S. Chang, B. S. Lee, Y. J. Cho, Y. Q. Chen, S. M. Kang and S. M. Jung, Generalized contraction mapping principle and differential equations in probabilistic metric spaces, Proc. Amer. Math. Soc. 124 (1996), 2367–2376.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. P. Chen and M-H. Shih, Fixed point theorems for point-to-point and point-to-set maps, J. Math. Anal. Appl. 71 (1979), 516–524.

    Article  MathSciNet  MATH  Google Scholar 

  22. Y.-Z. Chen, A variant of the Meir-Keeler type theorem in ordered Banach spaces, J. Math. Anal. Appl. 236 (1999), 585–593.

    Article  MathSciNet  MATH  Google Scholar 

  23. Y-Z. Chen, Inhomogeneous iterates of contraction mappings and nonlinear ergodic theorem, Nonlinear Anal. 39 (2000), 1–10.

    Article  MathSciNet  Google Scholar 

  24. S. Chu and J. B. Diaz, A fixed point theorem for “in the large” application of the contraction principle, Accad. delle Sci. Torino 999 (1965), 351–363.

    MathSciNet  Google Scholar 

  25. P. Collaço and J. C. E. Silva, A complete comparison of 25 contraction conditions, Nonlinear Anal. 30 (1997), 471–476.

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Z. Daffer, H. Kaneko, and W. Li, On a conjecture of S. Reich, Proc. Amer. Math. Soc. 124 (1996), 3159–3162.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. W. de Bakker and E. P. de Vink, Denotational models for programming languages: applications of Banach’s fixed point theorem, 8th Prague Topological Symposium on General Topology and its Relations to Modern Analysis and Algebra (1996), Topology Appl 85 (1998), 35–52.

    Article  MathSciNet  MATH  Google Scholar 

  28. K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1980.

    Google Scholar 

  29. K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin, New York, 1992.

    Google Scholar 

  30. P. Diamond, P. Kloeden, and A. Pokrovskii, Absolute retracts and a general fixed point theorem for fuzzy sets, Fuzzy Sets and Systems 86 (1977), 377–380.

    Article  MathSciNet  Google Scholar 

  31. D. Downing and W. A. Kirk, A generalization of Caristi’s theorem with applications to nonlinear mapping theory in Banach spaces, Pacific J. Math. 69 (1977), 339–346.

    MathSciNet  MATH  Google Scholar 

  32. D. Downing and W. A. Kirk, Fixed point theorems for set valued mappings in metric and Banach spaces, Math. Japonica 22 (1977), 89–112.

    MathSciNet  Google Scholar 

  33. J. Dugundji and A. Granas, Weakly contractive maps and elementary domain invariance theorems, Gull. Greek Math. Soc. 19 (1978), 141–151.

    MathSciNet  MATH  Google Scholar 

  34. I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. 1 (1979), 443–474.

    Article  MathSciNet  MATH  Google Scholar 

  35. B. Forte and E. Vrscay, Solving the inverse problem for function/image approximation using iterated function systems I. Theoretical Basis, Fractals 2 (1994), 325–334.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. A. Florinskii, On the existence of connected extensions of metric spaces and Banach’s theorem on contraction mappings (Russian), Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 1991, OVYR vyp. 4, 91(1992), 18–22; translation in Vestnik Leningrad Univ. Math. 24 (1991), 17–20.

    MathSciNet  Google Scholar 

  37. M. Frigon, Fixed point results for generalized contractions and applications, Proc. Amer. Math. Soc. 128 (2000), 2957–2965.

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc. 40 (1973), 604–608.

    Article  MathSciNet  MATH  Google Scholar 

  39. K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Univ. Press, Cambridge, 1990.

    Google Scholar 

  40. O. HadLe, A generalization of the contraction principle in PM spaces, in Review of research Faculty of Science“,Zb. Rad. (Kragujevac)10(1980), 13–21.

    Google Scholar 

  41. O. Hadzié, Fixed Point Theory in Probabilistic Metric Spaces, University of Novi Sad, Institute of Mathematics, Novi Sad, 1995.

    Google Scholar 

  42. M. Hegedus, New generalizations of Banach’s contraction principle, Acta Sci. Math. (Szeged) 42 (1980), 87–89.

    MathSciNet  Google Scholar 

  43. S. Heilpern, Fuzzy mappings and fixed point theorems, J. Math. Anal. Appl. 83 (1981), 566–569.

    Article  MathSciNet  MATH  Google Scholar 

  44. T. L. Hicks, Fixed point theory in probabilistic metric spaces, in “Review of research Faculty of Science”, 13, Univ. of Novi Sad, Novi Sad, 1983, pp. 63–72.

    Google Scholar 

  45. T. L. Hicks and B. E. Rhoades, A Banach type fixed point theorem, Math. Japonica 24 (1979), 327–330.

    MathSciNet  MATH  Google Scholar 

  46. R. D. Holmes, Fixed points for local radial contractions, in Fixed Point Theory and its Applications ( S. Swaminathan, ed.), Academic Press, New York, 1976, pp. 79–89.

    Google Scholar 

  47. T. Hu and W. A. Kirk, Local contractions in metric spaces, Proc. Amer. Math. Soc. 68 (1978), 121–124.

    Article  MathSciNet  MATH  Google Scholar 

  48. L. Janos, A converse of Banach’s contraction theorem, Proc. Amer. Math. Soc. 18(1967), 287289.

    Google Scholar 

  49. L. Janos, An application of combinatorial techniques to a topological problem, Bull. Austral. Math. Soc. 9 (1973), 439–443.

    Article  MathSciNet  MATH  Google Scholar 

  50. J. Jachymski, An iff fixed point criterion for continuous self-mappings on a complete metric space, Aeq. Math. 48 (1994), 163–170.

    MathSciNet  MATH  Google Scholar 

  51. J. Jachymski, On Reich’s open question concerning fixed points of multimaps, Boll. Un. Math. Ital. (7) 9-A(1995), 453–460.

    Google Scholar 

  52. J. Jachymski, An extension of A. Ostrowski’s theorem on the round-off stability of iterations, Aeq. Math. 53 (1997), 242–253.

    MathSciNet  MATH  Google Scholar 

  53. J. Jachymski, Equivalence of some contractivity properties over metrical structures, Proc. Amer. Math. Soc. 125 (1997), 2327–2335.

    Article  MathSciNet  MATH  Google Scholar 

  54. J. Jachymski, A short proof of the converse to the contraction principle, and some related results, preprint.

    Google Scholar 

  55. J. Jachymski, B. Schröder and J. D. Stein, Jr., A connection between fixed-point theorems and tiling problems, J. Combin. Theory Ser. A (1999), to appear.

    Google Scholar 

  56. J. Jachymski and J. D. Stein, Jr., A minimum condition and some related fixed-point theorems, J. Austral. Math. Soc. (Series A) 66 (1999), 224–243.

    Article  MathSciNet  MATH  Google Scholar 

  57. G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly 83 (1976), 261–263.

    Article  MathSciNet  MATH  Google Scholar 

  58. G. Jungck, Local radial contractions–a counter-example, Houston J. Math. 8 (1982), 501–506.

    MathSciNet  MATH  Google Scholar 

  59. O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems 24 (1987), 301–317.

    Article  MathSciNet  MATH  Google Scholar 

  60. S. Kasahara, On fixed points in partially ordered sets and Kirk-Caristi theorem, Math. Sem. Notes, Kobe Univ. 3 (1975), 229–232.

    Google Scholar 

  61. W. A. Kirk, Caristi’s fixed point theorem and metric convexity, Colloq. Math. 36 (1976), 81–86.

    MathSciNet  MATH  Google Scholar 

  62. R. J. Knill, Fixed points of uniform contractions, J. Math. Anal. Appl. 12 (1965), 449–455.

    Article  MathSciNet  MATH  Google Scholar 

  63. M. A. Krasnoselskii, Some problems of nonlinear analysis (Russian), Uspehi Math. Nauk (N.S.) 9(1961); Amer. Math. Soc. Translations 10 (1958), 345–409.

    MathSciNet  Google Scholar 

  64. M. A. Krasnoselskii and V. J. Stetsenko, About the theory of equations with concave operators, Sib. Mat. Zh. 10(1969), 565–572 (Russian).

    Google Scholar 

  65. M. A. Krasnoselskii and G. M. Vainikko, et al., Approximate solutions of operator equations, Wolters Noordhoff, Groningen, 1972.

    Book  Google Scholar 

  66. M. A. Krasnoselskii and P. P. Zabrieko, Geometrical Methods of Nonlinear Analysis, Springer-Verlag, Berlin, 1994.

    Google Scholar 

  67. S. Leader, A topological characterization of Banach contractions, Pacific J. Math. 69 (1977), 461–466.

    MathSciNet  MATH  Google Scholar 

  68. C. M. Lee, A development of contraction mapping principles on Hausdorff uniform spaces, Trans. Amer. Math. Soc. 226 (1977), 147–159.

    Article  MathSciNet  MATH  Google Scholar 

  69. T. C. Lim, On fixed point stability for set-valued mappings with applications to generalized differential equations, J. Math. Anal. Appl. 110 (1985), 436–441.

    Article  MathSciNet  MATH  Google Scholar 

  70. T. C. Lim, On characterizations of Meir-Keeler contractive maps, Nonlinear Anal. (to appear).

    Google Scholar 

  71. M. Lindelöf, Sur l’application des méthodes d’approximation successives l’étude des intégrales réeles des équations différentielles ordinaires, J. Math. Pures et Appl. (1894), 117–128.

    Google Scholar 

  72. Z. Liu, On Park’s open questions and some fixed point theorems for general contractive type mappings, J. Math. Anal. Appl. 234 (1999), 165–182.

    Article  MathSciNet  MATH  Google Scholar 

  73. M. G. Maia, Un’Osservazione sulle contrazioni metriche, Rend. Sem. Mat. Univ. Padova 40 (1968), 139–143.

    MathSciNet  MATH  Google Scholar 

  74. R. Manka, Some forms of the axiom of choice, Jahrb. Kurt Gödel Ges. vol. 1, Wien, 1988, pp. 24–34.

    Google Scholar 

  75. J. T. Markin, A fixed point theorem for set-valued mappings, Bull. Amer. Math. Soc. 74 (1968), 639–640.

    Article  MathSciNet  MATH  Google Scholar 

  76. J. Matkowski, Integrable solutions of functional equations, Diss. Math. 127, Warsaw, 1975.

    Google Scholar 

  77. J. Matkowski, Nonlinear contractions in metrically convex spaces, Publ. Math. Debrecen 45 /12 (1994), 103–114.

    MathSciNet  MATH  Google Scholar 

  78. A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969), 326–329.

    Article  MathSciNet  MATH  Google Scholar 

  79. K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. 37 (1951), 178–180.

    Article  MathSciNet  Google Scholar 

  80. K. Menger, Probabilistic geometry, Proc. Nat. Acad. Sci. 37 (1951), 226–229.

    Article  MathSciNet  MATH  Google Scholar 

  81. P. R. Meyers, A converse to Banach’s contraction theorem, J. Research Nat. Bureau of Standards–B. Math. and Math. Physics, 71B (1967), 73–76.

    MathSciNet  MATH  Google Scholar 

  82. P. R. Meyers, On contractifiable self-mappings, Nonlinear Analysis (Th. M. Rassias, ed.), World Scientific Publ. Co., Singapore, 1987, pp. 407–432.

    Google Scholar 

  83. N. Mizoguchi, A generalization of Brondsted’s results and its applications, Proc. Amer. Math. Soc. 108 (1990), 707–714.

    MathSciNet  MATH  Google Scholar 

  84. S. B. Nadler, Jr., Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475–488.

    MathSciNet  MATH  Google Scholar 

  85. W. Oetlli and M. Théra, Equivalents of Ekeland’s principle, Bull. Aust. Math. Soc. 48 (1993), 385–392.

    Article  Google Scholar 

  86. V. I. Opoitsev, A converse to the principle of contracting maps, Russian Math. Surveys 31(1976), 175–204; (from Uspekhi Mat. Nauk 31 (1976), 169–198 ).

    Google Scholar 

  87. A. M. Ostrowski, The round off stability of iterations, Z. Angew. Math. Mech. 47 (1967), 77–81.

    Article  MathSciNet  MATH  Google Scholar 

  88. E. Pap, O Hadzié, and R. Mesiar, A fixed point theorem in probabilistic metric spaces and an application, J. Math. Anal. Appl. 202 (1996), 433–449.

    Article  MathSciNet  MATH  Google Scholar 

  89. S. Park, On general contractive type conditions, J. Korean Math. Soc. 17 (1980), 131–140.

    MathSciNet  MATH  Google Scholar 

  90. S. Park, On extensions of the Caristi-Kirk fixed point theorem, J. Korean Math. Soc. 19 (1983), 143–151.

    MathSciNet  MATH  Google Scholar 

  91. S. Park, Equivalent formulations of Ekeland’s variational principle for approximate solutions of minimization problems and their applications, Operator Equations and Fixed Point Theorems (S. P. Singh, et al., eds.), MSRI-Korea Publ., vol 1, 1986, pp. 55–68.

    Google Scholar 

  92. S. Park and B. E. Rhoades, Meir-Keeler type contractive conditions, Math. Japon. 26 (1981), 13–20.

    MathSciNet  MATH  Google Scholar 

  93. L. Pasicki, A short proof of the Caristi theorem, Ann. Soc. Polon. Series I: Comm. Math. 22 (1978), 427–428.

    Google Scholar 

  94. G. Peano, Sull’integrabilita delle equazioni differenziali del primo ordine, Atti R. Accad. Sci. Torino 21(1885–86), 677–685.

    Google Scholar 

  95. J. P. Penot, A short constructive proof of Caristi’s fixed point theorem, Publ. Math. Univ. Paris 10 (1976), 1–3.

    Google Scholar 

  96. S. Priess-Crampe, Der Banachsche Fixpunktzatz für ultrametrische Räume, Results in Math. 18 (1990), 178–186.

    MathSciNet  MATH  Google Scholar 

  97. V. Radu, Some fixed point theorems in probabilistic metric spaces, in: Lecture Notes in Math. vol. 1233, Springer Verlag, New York, Berlin, 1987, pp. 125–133.

    Google Scholar 

  98. E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc. 13 (1962), 459–465.

    Article  MathSciNet  MATH  Google Scholar 

  99. E. Rakotch, A note on a-locally contractive mappings, Bull. Res. Council Israel 40 (1962), 188–191.

    MathSciNet  Google Scholar 

  100. S. Reich, Some fixed point problems, Atti. Accad. Naz. Lincei Rend. Cl. Sci. fix. Mat. Natur. 57 (1974), 194–198.

    Google Scholar 

  101. S. Reich, Some problems and results in fixed point theory, in Topological Methods in Nonlinear Functional Analysis (S. P. Singh, S. Thormeier, and B. Watson, eds.), Contemporary Math. 21(1980),179–187.

    Google Scholar 

  102. B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1970), 257–290.

    Article  MathSciNet  Google Scholar 

  103. B. Ricceri, Une proprité topologique de resemble des points fixes d’une contraction multivoque à valuers convexes, Atti. Acc. Lincei Rend. Fis. 81 (1987), 283–286.

    MathSciNet  MATH  Google Scholar 

  104. I. Rosenholtz, Evidence of a conspiracy among fixed point theorems, Proc. Amer. Math. Soc. 53 (1976), 213–216.

    Article  MathSciNet  Google Scholar 

  105. I. A. Rus, Weakly Picard mappings, Comment. Math. Univ. Carolinae 34 (1993), 769–773.

    MathSciNet  MATH  Google Scholar 

  106. J. Saint Raymond, Multivalued contractions, Set-Valued Anal. 2 (1994), 559–571.

    Article  MathSciNet  MATH  Google Scholar 

  107. B. Schweizer, H. Sherwood, and R. Tardiff, Comparing two contraction notions on probabilistic metric spaces, Stochastica 12 (1988), 5–17.

    MathSciNet  MATH  Google Scholar 

  108. A. K. Seda, Quasi-metrics and the semantics of logic programs, Fund. Inform. 29 (1997), 97–117.

    MathSciNet  MATH  Google Scholar 

  109. P. V. Semenov, The structure of the fixed-point set of paraconvex-valued contraction mappings (Russian), Tr. Mat. Inst. Stekiova 212 (1996), 188–12.

    Google Scholar 

  110. J. Siegel, A new proof of Caristi’s fixed point theorem, Proc. Amer. Math. Soc. 66(9177), 54–56.

    Google Scholar 

  111. V. M. Sehgal and A. T. Bharucha-Reid, Fixed points of contraction mappings on probabilistic metric spaces, math. Systems Theory 6 (1972), 97–102.

    Article  MathSciNet  MATH  Google Scholar 

  112. H. Sherwood, Complete probabilistic metric spaces, Z. Wahrsch. Verw. Geb. 29 (1971), 117–128.

    Article  MathSciNet  Google Scholar 

  113. J. D. Stein, Jr., A systematic generalization procedure for fixed-point theorems, Rocky Mountain J. Math., to appear.

    Google Scholar 

  114. W. Takahashi, Existence theorems and fixed point theorems for multivalued mappings, Fixed Point Theory and Applications (J. B. Haillon and M. Théra, eds.), Longman Sci. Tech., Essex, 1991, pp. 397–406.

    Google Scholar 

  115. D. H. Tan, A classification of contractive mappings in probabilistic metric spaces, Acta Math. Vietnam. 23 (1998), 295–302.

    MATH  Google Scholar 

  116. E. Tarafdar, An approach to fixed-point theorems on uniform spaces, Trans. Amer. Math. Soc. 191 (1974), 209–225.

    Article  MathSciNet  MATH  Google Scholar 

  117. E. Tarafdar and X. -Z. Yuan, Set-valued topological contractions, Appl. Math. Lett. 8 (1995), 79–81.

    MathSciNet  MATH  Google Scholar 

  118. R. M. Tardiff, Contraction maps on probabilistic metric spaces, J. Math. Anal. Appl. 165 (1992), 517–523.

    Article  MathSciNet  MATH  Google Scholar 

  119. M. Taskovic, A monotone principle of fixed points, Proc. Amer. Math. Soc. 94 (1985), 427–432.

    Article  MathSciNet  MATH  Google Scholar 

  120. F. Tricorni, Una teorema sulla convergenza delle successioni formate delle successive iterate di una funzione di una variabile reale, Giorn. Mat. Bataglini 54 (1916), 1–9.

    Google Scholar 

  121. M. Turinici, The monotone principle of fixed points: a correction, Proc. Amer. Math. Soc. 122 (1994), 643–645.

    MathSciNet  MATH  Google Scholar 

  122. W. Walter, Remarks on a paper by F. Browder about contraction, Nonlinear Anal., 5 (1981), 21–25.

    Article  MathSciNet  MATH  Google Scholar 

  123. C. S. Wong, On a fixed point theorem of contractive type, Proc. Amer. Math. Soc. 57 (1976), 283–284.

    Article  MathSciNet  MATH  Google Scholar 

  124. J. S. W. Wong, Generalizations of the converse of the contraction mapping principle, Canad. J. Math. 18 (1966), 1095–1104.

    MATH  Google Scholar 

  125. H. K. Xu, Random fixed point theorems for nonlinear uniformly Lipschitzian mappings, Nonlinear Anal. 26 (1996), 1301–1311.

    Article  MathSciNet  MATH  Google Scholar 

  126. H. K. Xu and I. Beg, Measurability of fixed point sets of multivalued random operators, J. Math. Anal. Appl. 225 (1998), 62–72.

    Article  MathSciNet  MATH  Google Scholar 

  127. L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338–353.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kirk, W.A. (2001). Contraction Mappings and Extensions. In: Kirk, W.A., Sims, B. (eds) Handbook of Metric Fixed Point Theory. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1748-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1748-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5733-4

  • Online ISBN: 978-94-017-1748-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics