Abstract
A complete survey of all that has been written about contraction mappings would appear to be nearly impossible, and perhaps not really useful. In particular the wealth of applications of Banach’s contraction mapping principle is astonishingly diverse. We only attempt to touch on some of the high points of this profound and seminal development in metric fixed point theory.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
V. G. Angelov, A converse to a contraction mapping theorem in uniform spaces, Nonlinear Anal. 12 (1988), 989–996.
J. S. Bae and S. Park, Remarks on the Caristi-Kirk fixed point theorem, Bull. Korean Math. Soc. 19 (1983), 57–60.
S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales, Fund. Math. 3 (1922), 133–181.
A. T. Bharucha-Reid, Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc. 82 (1976), 641–657.
C. Bessaga, On the converse of the Banach “fixed-point principle”, Colloq. Math. VII (1959), 41–43.
A. Bielecki, Une remarque sur la méthode de Banach-Caccioppoli-Tikhonov dans la théorie des équations differentielles ordinaires, Bull. Acad. Polon Sci. Cl. III, 4 (1956), 261–264.
L. M. Blumenthal, Distance Geometry, Oxford Univ. Press, London, 1953.
D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458–464.
H. Brezis and F. E. Browder, A general principle on ordered sets in nonlinear functional analysis, Advances in Math. 21 (1976), 355–364.
A. Brondsted, Fixed points and partial orders, Proc. Amer. Math. Soc. 60 (1976), 365–366.
F. E. Browder, On the convergence of successive approximations for nonlinear functional equations, Nederl. Akad. Wetensch. Ser. A71=Indag. Math. 30 (1968), 27–35.
F. E. Browder, On a theorem of Caristi and Kirk, Fixed Point Theory and its Applications (S. Swaminathan, ed.), Academic Press, New York, 1976, pp. 23–27.
F. E. Browder, Remarks on fixed point theorems of contractive type, Nonlinear Anal. 3 (1979), 657–661.
T. A. Burton, Integral equations, implicit functions and fixed points, Proc. Amer. Math. Soc. 124 (1996), 2383–2390.
T. A. Burton and C. Kirk, A fixed point theorem of Krasnoselskii-Shaefer type, Math. Nachr. 189 (1998), 23–31.
R. Caccioppoli, Una teorema generale sull’esistenza di elementi uniti in una transformazione funzionale, Ren. Accad. Naz Lincei 11 (1930), 794–799.
G. L. Cain, Jr., and M. Z. Nashed, Fixed points and stability for a sum of two operators in locally convex spaces, Pacific J. Math. 39 (1971), 581–592.
J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241–251.
P. M. Centore and E. R. Vrscay, Continuity of attractors and invariant measures for iterated function systems, Canad. Math. Bull. 37 (1994), 315–329.
S. S. Chang, B. S. Lee, Y. J. Cho, Y. Q. Chen, S. M. Kang and S. M. Jung, Generalized contraction mapping principle and differential equations in probabilistic metric spaces, Proc. Amer. Math. Soc. 124 (1996), 2367–2376.
M. P. Chen and M-H. Shih, Fixed point theorems for point-to-point and point-to-set maps, J. Math. Anal. Appl. 71 (1979), 516–524.
Y.-Z. Chen, A variant of the Meir-Keeler type theorem in ordered Banach spaces, J. Math. Anal. Appl. 236 (1999), 585–593.
Y-Z. Chen, Inhomogeneous iterates of contraction mappings and nonlinear ergodic theorem, Nonlinear Anal. 39 (2000), 1–10.
S. Chu and J. B. Diaz, A fixed point theorem for “in the large” application of the contraction principle, Accad. delle Sci. Torino 999 (1965), 351–363.
P. Collaço and J. C. E. Silva, A complete comparison of 25 contraction conditions, Nonlinear Anal. 30 (1997), 471–476.
P. Z. Daffer, H. Kaneko, and W. Li, On a conjecture of S. Reich, Proc. Amer. Math. Soc. 124 (1996), 3159–3162.
J. W. de Bakker and E. P. de Vink, Denotational models for programming languages: applications of Banach’s fixed point theorem, 8th Prague Topological Symposium on General Topology and its Relations to Modern Analysis and Algebra (1996), Topology Appl 85 (1998), 35–52.
K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1980.
K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin, New York, 1992.
P. Diamond, P. Kloeden, and A. Pokrovskii, Absolute retracts and a general fixed point theorem for fuzzy sets, Fuzzy Sets and Systems 86 (1977), 377–380.
D. Downing and W. A. Kirk, A generalization of Caristi’s theorem with applications to nonlinear mapping theory in Banach spaces, Pacific J. Math. 69 (1977), 339–346.
D. Downing and W. A. Kirk, Fixed point theorems for set valued mappings in metric and Banach spaces, Math. Japonica 22 (1977), 89–112.
J. Dugundji and A. Granas, Weakly contractive maps and elementary domain invariance theorems, Gull. Greek Math. Soc. 19 (1978), 141–151.
I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. 1 (1979), 443–474.
B. Forte and E. Vrscay, Solving the inverse problem for function/image approximation using iterated function systems I. Theoretical Basis, Fractals 2 (1994), 325–334.
A. A. Florinskii, On the existence of connected extensions of metric spaces and Banach’s theorem on contraction mappings (Russian), Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 1991, OVYR vyp. 4, 91(1992), 18–22; translation in Vestnik Leningrad Univ. Math. 24 (1991), 17–20.
M. Frigon, Fixed point results for generalized contractions and applications, Proc. Amer. Math. Soc. 128 (2000), 2957–2965.
M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc. 40 (1973), 604–608.
K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Univ. Press, Cambridge, 1990.
O. HadLe, A generalization of the contraction principle in PM spaces, in Review of research Faculty of Science“,Zb. Rad. (Kragujevac)10(1980), 13–21.
O. Hadzié, Fixed Point Theory in Probabilistic Metric Spaces, University of Novi Sad, Institute of Mathematics, Novi Sad, 1995.
M. Hegedus, New generalizations of Banach’s contraction principle, Acta Sci. Math. (Szeged) 42 (1980), 87–89.
S. Heilpern, Fuzzy mappings and fixed point theorems, J. Math. Anal. Appl. 83 (1981), 566–569.
T. L. Hicks, Fixed point theory in probabilistic metric spaces, in “Review of research Faculty of Science”, 13, Univ. of Novi Sad, Novi Sad, 1983, pp. 63–72.
T. L. Hicks and B. E. Rhoades, A Banach type fixed point theorem, Math. Japonica 24 (1979), 327–330.
R. D. Holmes, Fixed points for local radial contractions, in Fixed Point Theory and its Applications ( S. Swaminathan, ed.), Academic Press, New York, 1976, pp. 79–89.
T. Hu and W. A. Kirk, Local contractions in metric spaces, Proc. Amer. Math. Soc. 68 (1978), 121–124.
L. Janos, A converse of Banach’s contraction theorem, Proc. Amer. Math. Soc. 18(1967), 287289.
L. Janos, An application of combinatorial techniques to a topological problem, Bull. Austral. Math. Soc. 9 (1973), 439–443.
J. Jachymski, An iff fixed point criterion for continuous self-mappings on a complete metric space, Aeq. Math. 48 (1994), 163–170.
J. Jachymski, On Reich’s open question concerning fixed points of multimaps, Boll. Un. Math. Ital. (7) 9-A(1995), 453–460.
J. Jachymski, An extension of A. Ostrowski’s theorem on the round-off stability of iterations, Aeq. Math. 53 (1997), 242–253.
J. Jachymski, Equivalence of some contractivity properties over metrical structures, Proc. Amer. Math. Soc. 125 (1997), 2327–2335.
J. Jachymski, A short proof of the converse to the contraction principle, and some related results, preprint.
J. Jachymski, B. Schröder and J. D. Stein, Jr., A connection between fixed-point theorems and tiling problems, J. Combin. Theory Ser. A (1999), to appear.
J. Jachymski and J. D. Stein, Jr., A minimum condition and some related fixed-point theorems, J. Austral. Math. Soc. (Series A) 66 (1999), 224–243.
G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly 83 (1976), 261–263.
G. Jungck, Local radial contractions–a counter-example, Houston J. Math. 8 (1982), 501–506.
O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems 24 (1987), 301–317.
S. Kasahara, On fixed points in partially ordered sets and Kirk-Caristi theorem, Math. Sem. Notes, Kobe Univ. 3 (1975), 229–232.
W. A. Kirk, Caristi’s fixed point theorem and metric convexity, Colloq. Math. 36 (1976), 81–86.
R. J. Knill, Fixed points of uniform contractions, J. Math. Anal. Appl. 12 (1965), 449–455.
M. A. Krasnoselskii, Some problems of nonlinear analysis (Russian), Uspehi Math. Nauk (N.S.) 9(1961); Amer. Math. Soc. Translations 10 (1958), 345–409.
M. A. Krasnoselskii and V. J. Stetsenko, About the theory of equations with concave operators, Sib. Mat. Zh. 10(1969), 565–572 (Russian).
M. A. Krasnoselskii and G. M. Vainikko, et al., Approximate solutions of operator equations, Wolters Noordhoff, Groningen, 1972.
M. A. Krasnoselskii and P. P. Zabrieko, Geometrical Methods of Nonlinear Analysis, Springer-Verlag, Berlin, 1994.
S. Leader, A topological characterization of Banach contractions, Pacific J. Math. 69 (1977), 461–466.
C. M. Lee, A development of contraction mapping principles on Hausdorff uniform spaces, Trans. Amer. Math. Soc. 226 (1977), 147–159.
T. C. Lim, On fixed point stability for set-valued mappings with applications to generalized differential equations, J. Math. Anal. Appl. 110 (1985), 436–441.
T. C. Lim, On characterizations of Meir-Keeler contractive maps, Nonlinear Anal. (to appear).
M. Lindelöf, Sur l’application des méthodes d’approximation successives l’étude des intégrales réeles des équations différentielles ordinaires, J. Math. Pures et Appl. (1894), 117–128.
Z. Liu, On Park’s open questions and some fixed point theorems for general contractive type mappings, J. Math. Anal. Appl. 234 (1999), 165–182.
M. G. Maia, Un’Osservazione sulle contrazioni metriche, Rend. Sem. Mat. Univ. Padova 40 (1968), 139–143.
R. Manka, Some forms of the axiom of choice, Jahrb. Kurt Gödel Ges. vol. 1, Wien, 1988, pp. 24–34.
J. T. Markin, A fixed point theorem for set-valued mappings, Bull. Amer. Math. Soc. 74 (1968), 639–640.
J. Matkowski, Integrable solutions of functional equations, Diss. Math. 127, Warsaw, 1975.
J. Matkowski, Nonlinear contractions in metrically convex spaces, Publ. Math. Debrecen 45 /12 (1994), 103–114.
A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969), 326–329.
K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. 37 (1951), 178–180.
K. Menger, Probabilistic geometry, Proc. Nat. Acad. Sci. 37 (1951), 226–229.
P. R. Meyers, A converse to Banach’s contraction theorem, J. Research Nat. Bureau of Standards–B. Math. and Math. Physics, 71B (1967), 73–76.
P. R. Meyers, On contractifiable self-mappings, Nonlinear Analysis (Th. M. Rassias, ed.), World Scientific Publ. Co., Singapore, 1987, pp. 407–432.
N. Mizoguchi, A generalization of Brondsted’s results and its applications, Proc. Amer. Math. Soc. 108 (1990), 707–714.
S. B. Nadler, Jr., Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475–488.
W. Oetlli and M. Théra, Equivalents of Ekeland’s principle, Bull. Aust. Math. Soc. 48 (1993), 385–392.
V. I. Opoitsev, A converse to the principle of contracting maps, Russian Math. Surveys 31(1976), 175–204; (from Uspekhi Mat. Nauk 31 (1976), 169–198 ).
A. M. Ostrowski, The round off stability of iterations, Z. Angew. Math. Mech. 47 (1967), 77–81.
E. Pap, O Hadzié, and R. Mesiar, A fixed point theorem in probabilistic metric spaces and an application, J. Math. Anal. Appl. 202 (1996), 433–449.
S. Park, On general contractive type conditions, J. Korean Math. Soc. 17 (1980), 131–140.
S. Park, On extensions of the Caristi-Kirk fixed point theorem, J. Korean Math. Soc. 19 (1983), 143–151.
S. Park, Equivalent formulations of Ekeland’s variational principle for approximate solutions of minimization problems and their applications, Operator Equations and Fixed Point Theorems (S. P. Singh, et al., eds.), MSRI-Korea Publ., vol 1, 1986, pp. 55–68.
S. Park and B. E. Rhoades, Meir-Keeler type contractive conditions, Math. Japon. 26 (1981), 13–20.
L. Pasicki, A short proof of the Caristi theorem, Ann. Soc. Polon. Series I: Comm. Math. 22 (1978), 427–428.
G. Peano, Sull’integrabilita delle equazioni differenziali del primo ordine, Atti R. Accad. Sci. Torino 21(1885–86), 677–685.
J. P. Penot, A short constructive proof of Caristi’s fixed point theorem, Publ. Math. Univ. Paris 10 (1976), 1–3.
S. Priess-Crampe, Der Banachsche Fixpunktzatz für ultrametrische Räume, Results in Math. 18 (1990), 178–186.
V. Radu, Some fixed point theorems in probabilistic metric spaces, in: Lecture Notes in Math. vol. 1233, Springer Verlag, New York, Berlin, 1987, pp. 125–133.
E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc. 13 (1962), 459–465.
E. Rakotch, A note on a-locally contractive mappings, Bull. Res. Council Israel 40 (1962), 188–191.
S. Reich, Some fixed point problems, Atti. Accad. Naz. Lincei Rend. Cl. Sci. fix. Mat. Natur. 57 (1974), 194–198.
S. Reich, Some problems and results in fixed point theory, in Topological Methods in Nonlinear Functional Analysis (S. P. Singh, S. Thormeier, and B. Watson, eds.), Contemporary Math. 21(1980),179–187.
B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1970), 257–290.
B. Ricceri, Une proprité topologique de resemble des points fixes d’une contraction multivoque à valuers convexes, Atti. Acc. Lincei Rend. Fis. 81 (1987), 283–286.
I. Rosenholtz, Evidence of a conspiracy among fixed point theorems, Proc. Amer. Math. Soc. 53 (1976), 213–216.
I. A. Rus, Weakly Picard mappings, Comment. Math. Univ. Carolinae 34 (1993), 769–773.
J. Saint Raymond, Multivalued contractions, Set-Valued Anal. 2 (1994), 559–571.
B. Schweizer, H. Sherwood, and R. Tardiff, Comparing two contraction notions on probabilistic metric spaces, Stochastica 12 (1988), 5–17.
A. K. Seda, Quasi-metrics and the semantics of logic programs, Fund. Inform. 29 (1997), 97–117.
P. V. Semenov, The structure of the fixed-point set of paraconvex-valued contraction mappings (Russian), Tr. Mat. Inst. Stekiova 212 (1996), 188–12.
J. Siegel, A new proof of Caristi’s fixed point theorem, Proc. Amer. Math. Soc. 66(9177), 54–56.
V. M. Sehgal and A. T. Bharucha-Reid, Fixed points of contraction mappings on probabilistic metric spaces, math. Systems Theory 6 (1972), 97–102.
H. Sherwood, Complete probabilistic metric spaces, Z. Wahrsch. Verw. Geb. 29 (1971), 117–128.
J. D. Stein, Jr., A systematic generalization procedure for fixed-point theorems, Rocky Mountain J. Math., to appear.
W. Takahashi, Existence theorems and fixed point theorems for multivalued mappings, Fixed Point Theory and Applications (J. B. Haillon and M. Théra, eds.), Longman Sci. Tech., Essex, 1991, pp. 397–406.
D. H. Tan, A classification of contractive mappings in probabilistic metric spaces, Acta Math. Vietnam. 23 (1998), 295–302.
E. Tarafdar, An approach to fixed-point theorems on uniform spaces, Trans. Amer. Math. Soc. 191 (1974), 209–225.
E. Tarafdar and X. -Z. Yuan, Set-valued topological contractions, Appl. Math. Lett. 8 (1995), 79–81.
R. M. Tardiff, Contraction maps on probabilistic metric spaces, J. Math. Anal. Appl. 165 (1992), 517–523.
M. Taskovic, A monotone principle of fixed points, Proc. Amer. Math. Soc. 94 (1985), 427–432.
F. Tricorni, Una teorema sulla convergenza delle successioni formate delle successive iterate di una funzione di una variabile reale, Giorn. Mat. Bataglini 54 (1916), 1–9.
M. Turinici, The monotone principle of fixed points: a correction, Proc. Amer. Math. Soc. 122 (1994), 643–645.
W. Walter, Remarks on a paper by F. Browder about contraction, Nonlinear Anal., 5 (1981), 21–25.
C. S. Wong, On a fixed point theorem of contractive type, Proc. Amer. Math. Soc. 57 (1976), 283–284.
J. S. W. Wong, Generalizations of the converse of the contraction mapping principle, Canad. J. Math. 18 (1966), 1095–1104.
H. K. Xu, Random fixed point theorems for nonlinear uniformly Lipschitzian mappings, Nonlinear Anal. 26 (1996), 1301–1311.
H. K. Xu and I. Beg, Measurability of fixed point sets of multivalued random operators, J. Math. Anal. Appl. 225 (1998), 62–72.
L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338–353.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Kirk, W.A. (2001). Contraction Mappings and Extensions. In: Kirk, W.A., Sims, B. (eds) Handbook of Metric Fixed Point Theory. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1748-9_1
Download citation
DOI: https://doi.org/10.1007/978-94-017-1748-9_1
Publisher Name: Springer, Dordrecht
Print ISBN: 978-90-481-5733-4
Online ISBN: 978-94-017-1748-9
eBook Packages: Springer Book Archive