Skip to main content

Generic Aspects of Metric Fixed Point Theory

  • Chapter

Abstract

Let X be a complete metric space. According to Baire’s theorem, the intersection of every countable collection of open dense subsets of X is dense in X. This rather simple, yet powerful result has found many applications. In particular, given a property which elements of X may have, it is of interest to determine whether this property is generic, that is, whether the set of elements which do enjoy this property contains a countable intersection of open dense sets. Such an approach, when a certain property is investigated for the whole space X and not just for a single point in X, has already been successfully applied in many areas of Analysis. We mention, for instance, the theory of dynamical systems [12, 18, 24, 35, 33, 52], optimization [22, 44], variational analysis [2, 9], [20, 211, the calculus of variations [4, 14, 55] and optimal control [56, 57].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ya.I. Alber, S. Guerre-Delabrière and L. Zelenko, The principle of weakly contractive mappings in metric spaces, Comm. Appl. Nonlinear Analysis 5 (1) (1998), 45–68.

    MATH  Google Scholar 

  2. E. Asplund, Fréchet differentiability of convex functions, Acta. Math. 121 (1968), 31–47.

    MathSciNet  MATH  Google Scholar 

  3. J.M. Ayerbe Toledano, T. Dominguez Benavides and G. López Acedo, Measures of Noncompactness in Metric Fixed Point theory, Birkhauser, Basel, 1997.

    MATH  Google Scholar 

  4. J.M. Ball and N.S. Nadirashvili, Universal singular sets for one-dimensional variational problems, Calc. Var. 1 (1993), 429–438.

    Article  MathSciNet  MATH  Google Scholar 

  5. H.H. Bauschke, A norm convergence result on random products of relaxed projections in Hilbert space, Trans. Amer. Math. Soc. 347 (1995), 1365–1373.

    Article  MathSciNet  MATH  Google Scholar 

  6. H.H. Bauschke and J.M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Review 38 (1996), 367–426.

    Article  MathSciNet  MATH  Google Scholar 

  7. H.H. Bauschke, J.M. Borwein and A.S. Lewis, The method of cyclic projections for closed convex sets in Hilbert space, Recent Developments in Optimization Theory and Nonlinear Analysis, Contemporary Mathematics 204 (1997), 1–38.

    Article  MathSciNet  Google Scholar 

  8. Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Amer. Math. Soc., Providence, RI, 2000.

    Google Scholar 

  9. J.M. Borwein and D. Preiss, A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions, Trans. Amer. Math. Soc. 303 (1987), 517–527.

    Article  MathSciNet  MATH  Google Scholar 

  10. D.W. Boyd and J.S.W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458–464.

    Article  MathSciNet  MATH  Google Scholar 

  11. R.E. Bruck and S. Reich, Nonexpansive projections and resolvents of accretive operators in Banach spaces, Houston J. Math. 3 (1977), 459–470.

    MathSciNet  MATH  Google Scholar 

  12. D. Butnariu, S. Reich and A.J. Zaslayski, Generic power convergence of operators in Banach spaces, Numer. Funct. Anal. Optim. 20 (1999), 629–650.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Carmona Alvarez and T. Dominguez Benavides, Porosity and k-set contractions, Boll. Un. Mat. Ital. 6 (1992), 227–232.

    MathSciNet  MATH  Google Scholar 

  14. A. Cellina and C. Mariconda, The existence question in the calculus of variations: A density result, Proc. Amer. Math. Soc. 120 (1994), 1145–1150.

    Article  MathSciNet  MATH  Google Scholar 

  15. J.E. Cohen, Ergodic theorems in demography, Bull. Amer. Math. Soc. 1 (1979), 275–295.

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Covitz and S.B. Nadler, Jr., Multi-valued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5–11.

    MathSciNet  MATH  Google Scholar 

  17. F.S. De Blasi and J. Myjak, Sur la convergence des approximations successives pour les contractions non linéaires dans un espace de Banach, C. R. Acad. Sci. Paris 283 (1976), 185–187.

    MATH  Google Scholar 

  18. F.S. De Blasi and J. Myjak, Generic flows generated by continuous vector fields in Banach spaces, Adv. in Math. 50 (1983), 266–280.

    Article  MathSciNet  MATH  Google Scholar 

  19. F. S. De Blasi and J. Myjak, Sur la porosité de l’ensemble des contractions sans point fixe, C. R. Acad. Sci. Paris 308 (1989), 51–54.

    MATH  Google Scholar 

  20. F.S. De Blasi and J. Myjak, On a generalized best approximation problem, J. Approximation Theory 94 (1998), 54–72.

    Article  MATH  Google Scholar 

  21. F. S. De Blasi, J. Myjak and P. L. Papini, Porous sets in best approximation theory, J. London Math. Soc. 44 (1991), 135–142.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Deville and J. Revalski, Porosity of ill-posed problems, Proc. Amer. Math. Soc. 128 (2000), 1117–1124.

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Dominguez Benavides, Generic existence of a nonempty compact set of fixed points, J. Math. Anal. Appl. 90 (1982), 421–430.

    Article  MathSciNet  MATH  Google Scholar 

  24. T. Dominguez Benavides, Generic existence of periodic solutions of differential equations in Banach spaces, Bull. Polish Acad. Sci. Math. 32 (1985), 129–135.

    Google Scholar 

  25. T. Dominguez Benavides, Some topological properties of the 1-set-contractions, Proc. Amer. Math. Soc. 93 (1985), 252–254.

    MathSciNet  MATH  Google Scholar 

  26. J. Dye, T. Kuczumow, P.K. Lin and S. Reich, Convergence of unrestricted products of nonexpansive mappings in spaces with the Opial property, Nonlinear Analysis 26 (1996), 767–773.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Dye and S. Reich, Random products of nonexpansive mappings, Optimization and Nonlinear Analysis, Pitman Research Notes in Mathematics Series 244 (1992), 106–118.

    MathSciNet  Google Scholar 

  28. K. Goebel and W.A. Kirk, Iteration processes for nonexpansive mappings, Topological Methods in Nonlinear Functional Analysis, Contemporary Mathematics 21 (1983), 115–123.

    Article  MathSciNet  MATH  Google Scholar 

  29. K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.

    Book  MATH  Google Scholar 

  30. K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984.

    MATH  Google Scholar 

  31. J.L. Kelley, General Topology, Van Nostrand, New York, 1955.

    MATH  Google Scholar 

  32. W.A. Kirk, Krasnosel’skii iteration process in hyperbolic space, Numer. Funct. Anal. Optim. 4 (1982), 371–381.

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Lasota and J. A. Yorke, The Generic property of existence of solutions of differential equations in Banach spaces, J. Differential Equations 13 (1973), 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  34. T.-C. Lim, A fixed point theorem for multivalued nonexpansive mappings in a uniformly convex space, Bull. Amer. Math. Soc. 80 (1974), 1123–1126.

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Myjak, Orlicz type category theorems for functional and differential equations, Dissertationes Math. (Rozprawy Mat.) 206 (1983), 1–81.

    MathSciNet  Google Scholar 

  36. S.B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475–488.

    MathSciNet  MATH  Google Scholar 

  37. R.D. Nussbaum, Some nonlinear weak ergodic theorems, SIAM J. Math. Anal. 21(1990), 436460.

    Google Scholar 

  38. E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc. 13 (1962), 459–465.

    Article  MathSciNet  MATH  Google Scholar 

  39. S. Reich, Fixed points of contractive functions, Boll. Un. Mat. Ital. 5 (1972), 26–42.

    MathSciNet  MATH  Google Scholar 

  40. S. Reich, Approximate selections, best approximations, fixed points, and invariant sets, J. Math. Anal. Appl. 62 (1978), 104–113.

    Article  MathSciNet  MATH  Google Scholar 

  41. S. Reich, The alternating algorithm of von Neumann in the Hilbert ball, Dynamic Systems and Appl. 2 (1993), 21–26.

    MathSciNet  MATH  Google Scholar 

  42. S. Reich and I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Analysis 15 (1990), 537–558.

    Article  MathSciNet  MATH  Google Scholar 

  43. S. Reich and A.J. Zaslayski, Convergence of generic infinite products of nonexpansive and uni-formly continuous operators, Nonlinear Analysis 36 (1999), 1049–1065.

    Article  MathSciNet  MATH  Google Scholar 

  44. S. Reich and A.J. Zaslayski, Generic convergence of descent methods in Banach spaces, Math. Oper. Research 25 (2000), 231–242.

    Article  MATH  Google Scholar 

  45. S. Reich and A.J. Zaslayski, Convergence of Krasnosel’skii-Mann iterations of nonexpansive operators, Math. Comput. Modelling, 32 (2000), 1423–1431.

    Article  MathSciNet  MATH  Google Scholar 

  46. S. Reich and A.J. Zaslayski, Almost all nonexpansive mappings are contractive, C. R. Math. Rep. Acad. Sci. Canada, 22 (2000), 118–124.

    MATH  Google Scholar 

  47. S. Reich and A.J. Zaslayski, Infinite products of resolvents of accretive operators, Topological Methods in Nonlinear Analysis, 15 (2000), 153–168.

    MathSciNet  MATH  Google Scholar 

  48. S. Reich and A.J. Zaslayski, Attracting mappings in Banach and hyperbolic spaces, J. Math. Anal. Appl., 253 (2001), 250–268.

    Article  MathSciNet  MATH  Google Scholar 

  49. S. Reich and A.J. Zaslayski, Convergence of iterates of nonexpansive set-valued mappings, Set Valued Mappings with Applications in Nonlinear Analysis, accepted for publication.

    Google Scholar 

  50. S. Reich and A.J. Zaslayski, Generic existence of fixed points for set-valued mappings, Set-Valued Analysis, accepted for publication.

    Google Scholar 

  51. S. Reich and A. J. Zaslayski, The set of noncontractive mappings is a-porous in the space of all nonexpansive mappings, Preprint, 2001.

    Google Scholar 

  52. G. Vidossich, Most of the successive approximations do converge, J. Math. Anal. Appl. 45 (1974), 127–131.

    Article  MathSciNet  MATH  Google Scholar 

  53. G. Vidossich, Existence, uniqueness and approximation of fixed points as a generic property, Bol. Soc. Brasil Mat. 5 (1974), 17–29.

    Article  MathSciNet  MATH  Google Scholar 

  54. L. Zajicek, Porosity and a-porosity, Real Analysis Exchange 13 (1987), 314–350.

    MathSciNet  Google Scholar 

  55. A.J. Zaslayski, Turnpike property for extremals of variational problems with vector-valued functions, Trans. Amer. Math. Soc. 351 (1999), 211–231.

    Article  MathSciNet  Google Scholar 

  56. A.J. Zaslayski, Existence of solutions of optimal control problems for a generic integrand without convexity assumptions, Nonlinear Analysis, 43 (2001), 339–361.

    Article  MathSciNet  Google Scholar 

  57. A.J. Zaslayski, Generic well-posedness of optimal control problems without convexity assumptions, SIAM J. Control Optim., in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Reich, S., Zaslavski, A.J. (2001). Generic Aspects of Metric Fixed Point Theory. In: Kirk, W.A., Sims, B. (eds) Handbook of Metric Fixed Point Theory. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1748-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1748-9_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5733-4

  • Online ISBN: 978-94-017-1748-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics