Skip to main content

Fermions and Topology

  • Chapter
  • 751 Accesses

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 130))

Abstract

It has been shown in an earlier paper [Bandyopadhyay and Hajra (1987)] that Nelson’s stochastic quantization procedure can be generalized to have a relativistic framework and the quantization of a Fermi field can be achieved when we take into account Brownian motion processes in the internal space also apart from that in the external space. For the quantization of a Fermi field we have to intorduce an anisotropy in the internal space so that the internal variable appears as a “direction vector”. The opposite orientation of the “direction vector” corresponds to particle and antiparticle. To be equivalent to the Feynman path integral we have to take into accuont compexified space-time when the coordinate is given by z μ = x μ + μ where ξ μ corresponds to the “direction vector” attached to the space-time point x μ [Hajra and Bandyopadhyay (1991)]. Since for quantization we have to introduce Brownian motion process both in the external and internal space, after quantization, for an observational procedure, we can think of the mean position of the particle in the external observable space with a stochastic extension as determined by the internal stochastic variable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 2

  1. Adler, S.L. (1969), Axial Vector Vortex in Spinor Electrodynamics, Phys. Rev. 177, pp. 2426–2438.

    Article  ADS  Google Scholar 

  2. Aitchison, I.J.R. (1987), Acta Physica Polonica B, 78, pp. 207.

    MathSciNet  Google Scholar 

  3. Bandyopadhyay, A., Chatterjee, P. and Bandyopadhyay, P. (1986), SL(2, C) Gauge Theory, N = 1 Supergravity and Torsion, Gen. Rel. Gray. 18, pp. 1193–1205.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bandyopadhyay, P. and IIajra, K. (1987), Stochastic Quantization of a Fermi Field: Fermions as Solitons, J. Math-Phys. 28, pp. 711–716.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Banerjee, D. and Bandyopadhyay, P. (1992), Topological Aspects of a Fermion, Chiral Anomaly and Berry Phase, J. Math. Phys. 33, pp. 990–997.

    Article  MathSciNet  ADS  Google Scholar 

  6. Basu, B. and Bandyopadhyay, P. (1998), Topological Aspects of Quantum Hall Fluid and Berry Phase, Int. J. Mod. Phys. B. 12, pp. 2649–2707.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Bell, J. and Jackiw, R. (1969), A PCAC Puzzle: ir° ryy in the a-model, Nuovo Cimento A, 60, pp. 47–61.

    Article  ADS  Google Scholar 

  8. Berry, M.V. (1984), Quantal phase Factors Accompanying Adiabatic Changes, Proc. Roy. Soc. (London) A., 392, pp. 45–57.

    Article  ADS  MATH  Google Scholar 

  9. Biswas, S.N. and Soni, S.K. (1991), Berry’s Phase for Coherent States and Canonical Transformation, Phys. Rev. A. 43, pp. 5717–5719.

    Article  MathSciNet  ADS  Google Scholar 

  10. Brooke, J.A. and Prugovecki, E. (1982), Gauge and Reciprocally Invariant Formulation of Relativistic Canonical Commutation Relations on Quantum Space-Time, Lett. Nuovo Cimento 33, pp. 171–175.

    Article  Google Scholar 

  11. Carmeli, M. and Malin, S. (1977), Reformulation of General Relativity as a Gauge Theory, Ann. Phys. 103, pp. 208–232.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Dijkgraaf, R. and Witten, E. (1990), Topological Gauge Theories and Group Cohomology, Comm. Math. Phys., 129, pp. 393–429.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Faddeev, L.D. (1984), Operator Anomaly for the Gauss Law, Phys. Lett. B. 145, pp. 81–84.

    Article  MathSciNet  ADS  Google Scholar 

  14. Faddeev, L.D., Shatashville, S.L. (1984), Theor. Math. Phys. 60 p. 770.

    Article  Google Scholar 

  15. Fierz, M. (1944), Heiv. Phys. Acta. 17, pp. 27.

    MathSciNet  MATH  Google Scholar 

  16. Fujikawa, K. (1979), Path Integral Measure for Gauge Invariant Fermion Theories, Phys. Rev. Lett. 42, pp. 1195–1198;

    Article  ADS  Google Scholar 

  17. Fujikawa, K. (1980), Phys. Rev. D. 21, pp. 2848–2858.

    Article  MathSciNet  ADS  Google Scholar 

  18. Fujiwara, T. (1985), 2-Cocycles in Current Algebra, Phys. Lett. B. 152, pp. 103–106.

    Google Scholar 

  19. Giavarini, G., Gozzi, E., Rohrlich, D. and Tacker, W.D. (1989), Phys. Lett. A. 138, pp. 235.

    Article  MathSciNet  ADS  Google Scholar 

  20. Giles, R. (1981), Reconstruction of Gauge Potentials from Wilson Loops, Phys. Rev. D. 24, pp. 2160–2168.

    Article  MathSciNet  ADS  Google Scholar 

  21. Hajra, K. and Bandyopadhyay, P. Equivalance of Stochastic and Klauder Quantization and the Concept of Locality and Nonlocality in Quantum Mechanics, Phys. Lett. A., 155, pp. 7–14.

    Google Scholar 

  22. Hurst, C.A. (1968), Charge Quantization and Nonintegrable Lie Algebras, Ann. Phys. 50, pp. 37–75.

    Google Scholar 

  23. Jackiw, R. (1984), Topological Invstigations of Quantized Gauge Theories, Relativity, Groups and Topology, Les Houches, Dewitt, B.S. and Stora, R. (eds.).

    Google Scholar 

  24. Jackiw, R. and Rajaraman, R. (1985), Vector Meson Mass Generation by Chiral Anomalies, Phys. Rev. Lett. 54, pp. 1219–1221.

    Article  ADS  MATH  Google Scholar 

  25. Kuratsuji, H. and Iida, S. (1988), Deformation of Symplectic Structure and Anomalous Commutators in Field Theories, Phys. Rev. D. 37, pp. 441–447.

    Article  MathSciNet  ADS  Google Scholar 

  26. Loll, R. (1992), New Loop Approach to Yang-Mills Theory, Group Theoretical Method in Physics, Proceedings of the XIX International Colloquium, Salamanca, Spain, Anales de Fisica. Monografias. M.A. del Olmo, M. Santander and J. Mateos Guilarte (Eds.) pp. 122–125.

    Google Scholar 

  27. Mahato, P. and Bandyopadhyay, P. (1987), Stochastic Geometry, Tor- sion and N =.1 Supergravity, Nuovo Cimento B. 98, pp. 53–62.

    Article  MathSciNet  ADS  Google Scholar 

  28. Mickelsson, J. (1985), Chiral Anomalies in Even and Odd Dimensions, Comm. Math. Phys. 97, pp. 361–370.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Nelson, P. and Alvarez-Gaume, L. (1985), Interpretation of Anomalies, Comm. Math. Phys. 99, pp. 103–114.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Niemi, A.J. and Semenoff, G.W. (1985), Quantum Holornony and the Chiral Gauge Anomaly, Phys. Rev. Lett. 55, pp. 927–930.

    Article  MathSciNet  ADS  Google Scholar 

  31. Niemi, A.J., Semenoff, G.W. and Wu, Y.S. (1986), Induced Quantum Curvature and Three Dimensional Gauge Theories, Nucl. Phys. B. 276, pp. 173–196.

    Article  MathSciNet  ADS  Google Scholar 

  32. Roy, A. and Bandyopadhyay, P. (1989), Topological Aspects of a Fermion and the Chiral Anomaly, J. Math. Phys. 30, pp. 2366–2372.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Schwinger, J. (1951), On Gauge Invariances and Vacuum Polarization, Phys. Rev. 82, pp. 664–679.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Sonoda, H. (1985), The Wess-Zumino Term and the Hamiltonian Formulation for Anomalies, Phys. Lett. B. 156, pp. 220–224;

    Article  MathSciNet  ADS  Google Scholar 

  35. Sonoda, H. (1986), Berry’s Phase in Chiral Gauge Theories, Nucl. Phys. B. 206, pp. 410–422.

    Article  MathSciNet  ADS  Google Scholar 

  36. Southerland, D.G. (1967), Current Algebra and Some Non-Strong Mesonic Decays, Nucl. Phys. B. 2, pp. 433–440.

    Article  ADS  Google Scholar 

  37. Steinberger, J. (1949), On the use of Subtraction Fields and the Lifetimes of Some Types of Meson Decays, Phys. Rev. 76, pp. 1180–1186.

    Article  ADS  MATH  Google Scholar 

  38. Sen, K. and Bandyopadhyay, P. (1994), A Geometrical Formulation of Abelian Gauge Structure in Non-Abelian Gauge Theories and Disconnected Gauge Group, J. Math. Phys. 35, pp. 2270–2281.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Wilczek, F. (1982), Remarks on Dyons, Phys. Rev. Lett. 48, pp. 1146–1149.

    Article  MathSciNet  ADS  Google Scholar 

  40. Witten, E. (1983), Current Algebra, Baryons and Quark Confinement, Nucl. Phys. B. 223, pp. 433–444.

    Article  MathSciNet  ADS  Google Scholar 

  41. Wu, Y.S. and Zee, A. (1985), Abelian Gauge Structure Inside Non-Abelian Gauge Theories, Nucl. Phys. B. 258, pp. 157–178.

    MathSciNet  Google Scholar 

  42. Zumino, B. (1985), Cohomology of Gauge Groups: Cocycles and Schwinger Terms, Nucl. Phys. B. 253, pp. 477–493.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bandyopadhyay, P. (2003). Fermions and Topology. In: Geometry, Topology and Quantum Field Theory. Fundamental Theories of Physics, vol 130. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1697-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1697-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6338-0

  • Online ISBN: 978-94-017-1697-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics