Archimedean Kaleidoscope: A Cognitive Tool to Support Thinking and Reasoning about Geometric Solids

  • Jim Morey
  • Kamran Sedig


This chapter presents an interactive visualization tool, Archimedean Kaleidoscope (AK). AK is a cognitive-scaffold tool aimed at supporting users’ cognitive activities while exploring and making sense of polyhedra visualizations. AK uses a three-dimensional kaleidoscopic metaphor to generate the visualizations. To aid users with their cognitive activities, AK produces the three-dimensional visualizations dynamically and provides a high level of interactivity with them. Additionally, the three-dimensional visuals are made metamorphic so as to help users investigate transitions and relationships among the different polyhedra.


Cognitive Activity Rotational Symmetry Regular Polygon Cognitive Tool Screen Capture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ball, W.W.R. (1939) Mathematical Recreations and Essays. Macmillan, Co. Ltd.Google Scholar
  2. 2.
    Card, S. K., Mackinlay, J. D.,, Shneiderman, B. (Eds., 1999 ) Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann Publishers.Google Scholar
  3. 3.
    Coxeter, H.S.M. (1991) Regular Complex Polytopes (2nd ed.). Cambridge University Press.Google Scholar
  4. 4.
    Gordin, D.N., Edelson, D.C.,& Gomez, L. (1996) Scientific Visualization as an Interpretive and Expressive Medium. In D. Edelson, E. Domeshek ( Eds. ), Proceedings of the Second International Conference on the Learning Sciences, 409–414.Google Scholar
  5. 5.
    Gregory, A., State, A., Lin, M.C., Manocha, D.,, Livingston, M.A. (1999) Interactive Surface Decomposition for Polyhedral Morphing. The Visual Computer, 15, 453–470.CrossRefGoogle Scholar
  6. 6.
    Hanson, A., Munzner, T.,, Francis, G. (1994) Interactive Methods for Visualizable Geometry. IEEE Computer, 27, 78–83.CrossRefGoogle Scholar
  7. 7.
    Holden, A. (1971) Shape, space, and symmetry. Columbia University Press.Google Scholar
  8. 8.
    Jonassen, D. H.,, Carr, C. S. (2000) Mindtools: Affording Multiple Knowledge Representations for Learning. In S. P. Lajoie (Ed.), Computers as Cognitive Tools, Lawrence Erlbaum Assoc., NJ.Google Scholar
  9. 9.
    Jonassen, D.H., Peck, K.L.,, Wilson, B.G. (1999) Learning with Technology: A Constructivist Perspective. Prentice-Hall, Inc.Google Scholar
  10. 10.
    Kinsey, K.,, Moore, T. E. (2002) Symmetry, Shape, and Space. Key College Publishing, PA.zbMATHGoogle Scholar
  11. 11.
    Lajoie, S. (Ed., 2000 ) Computers as Cognitive Tools. Hillsdale, NJ: Lawrence Erlbaum Assoc.Google Scholar
  12. 12.
    Laurillard, D. (1993) Rethinking University Teaching: A Framework for the Effective Use of Educational Ttechnology. Routledge.Google Scholar
  13. 13.
    Möbius, August Ferdinand, Gesammelte Werke (1967) hrsg. auf Veranlassung der Königlichen Sächsischen Gesellschaft der Wissenschaften. Wiesbaden: M. Sändig, [Neudruck der Ausg. 1885–87].Google Scholar
  14. 14.
    Norman, D. A. (1993) Things That Make Us Smart: Defining Human Attributes in the Age of the Machine. Addison-Wesley Publishing.Google Scholar
  15. 15.
    Palais, R.S. (1999) The Visualization of Mathematics: Towards a Mathematical Exploratorium. Notices of the American Mathematical Society, 46 (6), 647–658.MathSciNetzbMATHGoogle Scholar
  16. 16.
    Peterson, D. (ed., 1996 ) Forms of Representation. Exeter, UK: Intellect Books.Google Scholar
  17. 17.
    Rieber, L. P. (1999) Animation in Computer-Based Instruction. Educational Technology Research, Development, 38 (1), 77–86.Google Scholar
  18. 18.
    Sedig, K., Klawe, M.,, Westrom, M. (2001) Role of Interface Manipulation Style and Scaffolding on Cognition and Concept Learning in Learnware. ACM Transactions on Computer-Human Interaction, 1 (8), 34–59.CrossRefGoogle Scholar
  19. 19.
    Senechel, M.,, Fleck, G. (Eds., 1988 ) Shaping Space: A Polyhedral Approach. Birkauser.Google Scholar
  20. 20.
    Shedroff, N. (1999) Information Interaction Design: A Unified Field Theory of Design. In R. Jacobson, Information Design, 267–292.The MIT Press.Google Scholar
  21. 21.
    Skemp, R. R. (1986) The Psychology of Learning Mathematics ( 2nd ed. ). Middlesex, UK: Pengu in Books.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Jim Morey
    • 1
  • Kamran Sedig
    • 2
  1. 1.Department of Computer Science, Cognitive Engineering LaboratoryThe University of Western OntarioLondonCanada
  2. 2.Department of Computer Science, Faculty of Information and Media Studies, Cognitive Engineering LaboratoryThe University of Western OntarioLondonCanada

Personalised recommendations