Skip to main content

Abstract

The paper presents a detailed analysis of the author’s hydrodynamical interpolation technique, which was developed and tested to compute a realistic eleven-mode ocean tide model in the real world oceans. Since ocean tidal currents are distinguished from other general ocean and atmospheric circulations by a massive number of available empirical tide data, advantage was taken of this unique opportunity to search systematically for realistic eddy-dissipation and bottom-friction laws. Those laws and their scale factors were determined in trial-and-error computer experiments to assure their proper representation of the real 1°-macroscopic nature of turbulent tidal currents. The quality of the representation was measured by the smoothness with which the hydrodynamically computed tidal field integrated thousands of empirical tide data uniformly over the world-wide oceans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Accad, Y. and Pekeris, C. L., 1978. “Solution of the Tidal Equations for the M2 and S9 Tides in the World Oceans from a Knowledge of the Tidal Potential Alone,” Phil. Trans. Roy. Soc., London, A, 290, p. 235.

    Article  Google Scholar 

  • Bogdanov, C. T. and Magarik, V. A., 1969. “A Numerical Solution of the Problem of Tidal Wave Propagation in the World Ocean.” Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana, 5, p. 1309, in Russian.

    Google Scholar 

  • Cartwright, D. E., 1977. “Ocean Tides.” Rep. Prog. Phys., 40, p. 665.

    Article  Google Scholar 

  • Cartwright, D. E., Zetler, B. D., and Hamon, B. V., 1979. “Pelagic Tidal Constants,” IAPSO Publication Scientifique No. 30.

    Google Scholar 

  • Cartwright, D. E., Edden, A. C., Spencer, R., and Vassie, J. M., 1980. “The Tides of the Northern Atlantic Ocean.” Phil. Trans., Roy. Soc., London, 298, p. 87.

    Article  Google Scholar 

  • Estes, R. H., 1977. “A Computer Software System for the Generation of Global Ocean Tides Including Self–Gravitation and Crustal Loading Effects,” Goddard Space Flight Center, TR–X–920–77–82, Greenbelt, Maryland.

    Google Scholar 

  • Goad, C. C. and Douglas, B. C., 1978. “Lunar Tidal Acceleration Obtained from Satellite-Derived Ocean Tide Parameters.” J. Geophys. Res., 83, p. 2306.

    Article  Google Scholar 

  • Gordeyev, R. G., Kagan, B. A., and Polyakov, E., 1977. “The Effects of Loading and Self-Attraction on Global Ocean Tides, the Model and the Results of a Numerical Experiment.” J. Phys. Oceanogr. 7, p. 161.

    Article  Google Scholar 

  • Hansen, W., 1948. “Die Ermittlung der Gezeiten Beliebig Gestalteter Meeresgebiete mit Hilfe des Randwertverfahrens.” Deutsche Hydr. Zeit, 1, p. 157.

    Google Scholar 

  • Hansen, W., 1966. “Die Reproduktion der Bewegungsvorgänge im Meere mit Hilfe Hydrodynamisch-Numerischer Verfahren,” Mitteilungengen des Inst. f. Meereskunde der Univ. Hamburg, V.

    Google Scholar 

  • Hendershott, M. C., 1972. “The Effects of Solid-Earth Deformation on Global Ocean Tides.” Geophys. J. Roy. Astr. Soc., 29, p. 380.

    Article  Google Scholar 

  • Lambeck, K., 1980. “The Earth’s Variable Rotation: Geophysical Causes and Consequences.” Cambridge University Press, Cambridge.

    Google Scholar 

  • Marchuk, G. L. and Kagan, B. A., 1977. “Ocean Tides: Mathematical Models of Numerical Experiments.” Gidrometeoizdat, Leningrad, in Russian.

    Google Scholar 

  • Melchior, P., 1983. “The Tides of the Planet Earth.” Sec. Ed., Pergamon Press, Oxford.

    Google Scholar 

  • Miller, G. R., 1966. “The Flux of Tidal Energy Out of the Deep Oceans.” J. Geophys. Res., 71, p. 2485.

    Article  Google Scholar 

  • Munk, W. H., 1966. “Abyssal Recipes.” Deep-Sea Res., 13, p. 707.

    Google Scholar 

  • Munk, W. H., 1968. “Once Again-Tidal Friction.” Quart. J. Roy. Soc., 9, p. 352.

    Google Scholar 

  • Munk, W. H. and Cartwright, D. E., 1966. “Tidal Spectroscopy and Prediction.” Phil. Trans. Roy. Soc. London, A, 259, p. 533.

    Article  Google Scholar 

  • Parke, M. E. and Hendershott, M. C., 1980. “M2,S2,K1 Models of the Global Ocean Tide on an Elastic Earth.” Marine Geodesy, 3, p. 379.

    Article  Google Scholar 

  • Pekeris, C. L. and Accad, Y. 1969. “Solution of Laplace’s Equation for the M2 Tide in the World Oceans.” Phil. Trans. Roy. Soc. London, A, 265, p. 413.

    Article  Google Scholar 

  • Proudman, J., 1928. “Deformation of Earth-Tides by Means of Water-Tides in Narrow Seas.” Bull Noll, Sect. Oceanogr., Cons. de Recherches, Venedig.

    Google Scholar 

  • Proudman, J., 1952. “Dynamical Oceanography.” Dover, New York.

    Google Scholar 

  • Schlichting, H., 1968. “Boundary-Layer Theory.” McGraw-Hill, New York.

    Google Scholar 

  • Schwiderski, E. W., 1978a. “Global Ocean Tides, Part I: A Detailed Hydrodynamical Interpolation Model,” NSWC/DL-TR 3866.

    Google Scholar 

  • Schwiderski, E. W., 1978b. “Hydrodynamically Defined Ocean Bathymetry,” NSWC/DL-TR 3888.

    Google Scholar 

  • Schwiderski, E. W., 1979. “Global Ocean Tides, Part II: ”The Semidiurnal Principal Lunar Tide (M2),“ NSWC TR 79–414.

    Google Scholar 

  • Schwiderski, E. W., 1980a. “Ocean Tides, Part I: Global Ocean Tidal Equations,” Marine Geodesy, 3, p. 161.

    Article  Google Scholar 

  • Schwiderski, E. W., 1980b. “Ocean Tides, Part II: A Hydrodynamical Interpolation Model,” Marine Geodesy, 3, p. 219.

    Article  Google Scholar 

  • Schwiderski, E. W., 1980c. “On Charting Global Ocean Tides,” Reviews of Geophysics and Space Physics, 18, p. 243.

    Article  Google Scholar 

  • Schwiderski, E. W., 1981a. “Global Ocean Tides, Parts III-IX.” NSWCTR’s 81–122, 81–142, 81–144, 81–218, 81–220, 81–222, 81–224.

    Google Scholar 

  • Schwiderski, E. W., 1981b. “Exact Expansions of Arctic Ocean Tides.” NSWC-TR 81–494.

    Google Scholar 

  • Schwiderski, E. W., 1983. “Atlas of Ocean Tidal Charts and Maps, Part I: The Semi-diurnal Principal Lunar Tide M2.” Marine Geodesy, 6, p. 219.

    Article  Google Scholar 

  • Schwiderski, E. W., 1984. “On Tidal Friction and the Braking of the Earth’s Rotation and Moon’s Revolution.” To be published.

    Google Scholar 

  • Schwiderski, E. W. and Szeto, L. T., 1981. “The NSWC Ocean Tide Data Tape (GOTD), Its Features and Application, Random-Point Tide Program.” NSWC-TR 81–254.

    Google Scholar 

  • Suendermann, J. and Brosche, P., 1978. “Numerical Computation of Tidal Friction for Present and Ancient Oceans.” In Tidal Friction and the Earth’s Rotation. Editors: Brosche, P. and Suendermann, J., Springer, Berlin, p. 125.

    Chapter  Google Scholar 

  • Taylor, G. I., 1918. “Tidal Friction in the Irish Sea.” Phil. Trans. Roy. Soc., London, A, 220, p. 1.

    Google Scholar 

  • Wunsch, C., 1975. “Internal Tides in the Ocean.” Reviews of Geophysics and Space Physics, 13, p. 167.

    Article  Google Scholar 

  • Zahel, W., 1970. “Die Reproduktion Gezeitenbedingter Bewegungsvorgange im Weltozean Mittels des Hydrodynamisch-Numerischen Verfahrens,” Mitteilungen des Inst. f. Meereskunde der Univ., Hamburg, X VII.

    Google Scholar 

  • Zahel, W., 1977. “A Global Hydrodynamical-Numerical 1°-Model of the Ocean Tides; the Oscillation System of the M2-Tide and its Distribution of Energy Dissipation. Ann. Geophys. t. 33, fasc. 1/2, p. 31.

    Google Scholar 

  • Zahel, W., 1978. “The Influence of Solid Earth Deformations on Semi-diurnal and Diurnal Oceanic Tides.” In Tidal Friction and the Earth’s Rotation. Editors: Brosche, P. and Suendermann, J., Springer, Berlin, p. 98.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schwiderski, E.W. (1984). Combined Hydrodynamical and Empirical Modeling of Ocean Tides. In: Seeber, G., Apel, J.R. (eds) Geodetic Features of the Ocean Surface and their Implications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1673-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1673-4_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8405-7

  • Online ISBN: 978-94-017-1673-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics