Skip to main content

Genetic influences on glucose neurotoxicity, aging, and diabetes: a possible role for glucose hysteresis

  • Chapter
Genetics and Evolution of Aging

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 3))

  • 339 Accesses

Abstract

Glucose may drive some age-correlated impairments and may mediate some effects of dietary restriction on senescence. The hypothesis that cumulative deleterious effects of glucose may impair hypothalamic neurons during aging, leading to hyperinsulinemia and other age-correlated pathologies, is examined in the context of genetic influences. Susceptibility to toxic effects of gold-thio-glucose (GTG) is correlated with longevity across several mouse strains. GTG and chronic hyperglycemia induce specific impairments in the ventromedial hypothalamus similar to impairments which occur during aging. GTG and a high-calorie diet both induce chronic hyperinsulinemia, leading initially to hypoglycemia, followed by the development of insulin resistance and hyperglycemia. Aging in humans and rodents appears to entail a similar pattern of hyperinsulinemia followed by insulin resistance. In humans, genetic susceptibility to high-calorie diet-induced impairments in glucose metabolism is extremely common in many indigenous populations, possibly due to the selection of the ‘thrifty genotype’. It is suggested that the ‘thrifty genotype’ may entail enhanced sensitivity to the neurotoxic effects of glucose, and may represent an example of antagonistic pleiotropy in human evolution. These data are consistent with the hypothesis that genetic susceptibility of hypothalamic neurons to the cumulative toxic effects of glucose (glucose neurohumoral hysteresis) may correlate with genetic influences on longevity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahdieh, H.B., J. Hamilton & G.N. Wade, 1983. Copulatory behavior and hypothalamic estrogen and progestin receptors in chronically insulin-deficient female rats. Physio. Behay. 31: 219–223.

    Google Scholar 

  • Akmayev, I.G. & A.E. Rabkina, 1976. CNS-pancreas system. The hypothalamic response to insulin deficiency. Endokrinologie 68: 211–220.

    Google Scholar 

  • Baron, A.D., L. Schaeffer, P. Shragg & O.S. Kolterman, 1987. Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type II diabetes. Diabetes 36: 274–284.

    Article  PubMed  CAS  Google Scholar 

  • Bergen, H. & C.V. Mobbs, 1992. Hypothalamic lesion by goldthio-glucose (GTG) leads to hyperglycemia in mice. Endocrine Soc. Abs., 74th Ann. Meet. Prog. Abs., p. 91

    Google Scholar 

  • Bergen, H., S.P. Kleopoulos, J. Pfaus & C.V. Mobbs, 1992. Effect of gold-thio-glucose (GTG) on hypothalamic oxytocin receptors and neuropeptide Y (NPY) mRNA. Soc. Neurosci. Abs., Vol. 18: p. 1485.

    Google Scholar 

  • Berthoud, H.R. & B. Jeanrenaud, 1979. Acute hyperinsulinemia & its reversal by vagotomy following lesions of the ventromedial hypothalamus in anesthetized rats. Endocrinology 105: 146–151.

    CAS  Google Scholar 

  • Bestetti, G. & G.L.Rossi, 1980. Hypothalamic lesions in rats with long-term streptozotocin-induced diabetes mellitus. Acta Neuropathol 52: 119–127.

    CAS  Google Scholar 

  • Bonnevie-Nielsen, T., L.T. Skovgaard & A. Lernmark, 1983. Beta-cell function relative to islet volume and hormone content in the isolated perfused mouse pancreas. Endocrinology 112: 1049–1056.

    Article  PubMed  CAS  Google Scholar 

  • Brancho-Romero, E. & G.M. Reaven, 1977. Effect on age and weight on plasma glucose and insulin responses in the rat. J. Am. Geriatr. Soc. 7: 299–302.

    Google Scholar 

  • Buzzi, S., G. Buzzi, A. Buzzi & C. Baccini, 1987. Hypothalamic syndrome in a woman with three sewing needles in the brain. Lancet 1: 1313.

    Article  PubMed  CAS  Google Scholar 

  • Cerami, A., 1985. Glucose as a mediator of aging. J. Am. Ger. Soc. 33: 626–634.

    Google Scholar 

  • Chen, M., R.N. Bergman, G. Pacini & D. Porte, 1985. Pathogenesis of age-related glucose intolerance in man: Insulin resistance and decreased beta-cell function. J. Clin. Endo. Metab. 60: 13–20.

    Google Scholar 

  • Chlouverakis, C., R.J. Jarrett & H. Keen, 1967. Glucose tolerance, age, and circulating insulin. Lancet 1: 806–809.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, M.D., 1979. The effect of aging on carbohydrate metabolism. A review of the English literature and a practical approach to the diagnosis of diabetes mellitus in the elderly. Metabolism 28: 688–705.

    Google Scholar 

  • Davidson, M.D. & D. Casanello-Ertl, 1979. Insulin antagonism on cultured rat myoblasts secondary to chronic exposure to insulin. Horm. Metab. Res. 11: 207–209.

    Google Scholar 

  • DeFronzo, R.A., 1979. Glucose tolerance and aging. Evidence for tissue insensitivity to insulin. Diabetes 28: 1095–1101.

    Google Scholar 

  • DeFronzo, R.A., R.C. Bonadonna & E. Ferrannini, 1992. Pathogenesis of NIDDM: A balanced overview. Diabetes Care 15: 318–368.

    Google Scholar 

  • Del Prato, S., P. Castellino, D.C. Simonson & R.A. DeFronzo, 1987. Hyperglucagonemia and insulin-mediated glucose metabolism. J. Clin. Invest. 79: 547–556.

    Google Scholar 

  • Diamond, J.M., 1992. Diabetes running wild. Nature 357: 362–363.

    Article  PubMed  CAS  Google Scholar 

  • Dowse, G.K., P.Z. Zimmet, C.F. Finch & V.R. Collins, 1992. Decline in incidence of epidemic glucose intolerance in Nauruans: Implications for the `Thrifty Genotype’. Am. J. Epidemiology 133: 1093–1104.

    Google Scholar 

  • Dyck, P.J., 1990. Resolvable problems in diabetic neuropathy. J. NIH Res. 2: 57–62.

    Google Scholar 

  • Ferner, R.E. & H.A.W. Neil, 1988. Sulfonylureas and hypoglycemia. Brit. Med. J. 296: 949–950.

    Google Scholar 

  • Frolunan, L.A., J.R. Goldman & L.L. Bernardis, 1972. Studies of insulin sensitivity in vivo in weanling rats with hypothalamic obesity. Metabolism 21: 1133–1139.

    Article  Google Scholar 

  • Garns, D.R., A.R. Diani, C. Smith & G.C. Gerritsen, 1982. Depopulation of the ventromedial hypothalamic nucleus in the diabetic Chinese hamster. Acta Neuropathol. 56: 63–66.

    Article  Google Scholar 

  • Garns, D.R. & D.L. Coleman, 1984. Diabetes-associated changes in estradiol accumulation in the aging C57BL/KsJ mouse brain. Neurosci. Lett. 49: 285–290.

    Google Scholar 

  • Garns, D.R., L.R. West & D.L. Coleman, 1985. Morphometric analysis of medial basal hypothalamic neuronal degeneration in diabetes (db/db) mutant C57BL/KsJ mice: Relation to age and hyperglycemia. Dev. Brain Res. 20: 161–168.

    Google Scholar 

  • Garns, D.R., D.L. Coleman & C.R. Morgan, 1985. Age-and diabetes-related changes in tissue glucose uptake and estradiol accumulation in the C57BL/KsJ mouse. Diabetes 34: 4752.

    Google Scholar 

  • Hamilton, C.L. & J.R. Brobeck, 1963. Diabetes mellitus in hyperphagic monkeys. Endocrinology 73: 512–515.

    CAS  Google Scholar 

  • Harris, M.I., W.C. Hadden, W.C. Knowler & P.H. Bennett, 1987. Prevalence of diabetes & impaired glucose tolerance and plasma glucose levels in U.S. population aged 20–74. Diabetes 36: 523–524.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, K., 1980. Glucose tolerance in the elderly with special reference to insulin and glucagon responses. Wakayama Med. Rep. 23: 29–39.

    Google Scholar 

  • Henninger, H.J. & J.J. Dorey, 1982. Handbook on genetically standardized JAX mice. The Jackson Laboratory, Bar Harbor, ME.

    Google Scholar 

  • Hutchinson, E.W., A.J., Shaw & M.R. Rose, 1991. Quantitative genetics of postponed aging in Drosophila melanogaster. II. Analysis of selected lines. Genetics 127: 729–737.

    Google Scholar 

  • Hsu, H.K. & M.T. Peng, 1978. Hypothalamic neuron number in old female rats. Gerontology 24: 434–440.

    CAS  Google Scholar 

  • Jeanrenaud, B., S. Halimi & G. Van de Werve, 1985. Neuroendocrine disorders seen as triggers of the triad: obesity-insulin-resistance-abnormal glucose tolerance. Diabetes Metab. Rev. 1: 261–291.

    Google Scholar 

  • Jeffrey, LJ.M., C. Gordon, A.P. Yates & H. Fox, 1985. Obesity, hyperinsulinemia and hyperplasia of the pancreatic islets in aging (C3H/HeJXC57B1/6J) Fl hybrid mice. Hormone Metab. Res. 18: 210–212.

    Google Scholar 

  • Kergoat, M., D. Bailbe & B. Portha, 1987. Effect of high sucrose diet on insulin secretion and insulin action: a study in the normal rat. Diabetologia 30: 252–258.

    Article  PubMed  CAS  Google Scholar 

  • Kleopoulos, S.P., L. Krey & C.V. Mobbs, 1992. Regulation of hypothalamic oxytocin receptors and lordosis reflex during reproductive senescence of female Fisher rats. Soc. Neurosci. Abs., Vol. 18:p. 1486.

    Google Scholar 

  • Kleopoulos, S.P. & C.V. Mobbs, 1993. Hypothalamic growth-hormone releasing hormone mRNA levels, and response to fasting, decrease with age in male rats. Soc. Neurosci. Abs., Vol 19 (in press).

    Google Scholar 

  • Landfield, P., J. Waymire & G. Lynch, 1978. Hippocampal aging and adrenocorticoids: A quantitative correlation. Science 202: 1098–1102.

    Google Scholar 

  • Landfield, P.W., R.K. Baskin & T.A. Pitler, 1981. Brain aging correlates: retardation by hormonal-pharmacological treatments. Science 214: 581–584.

    Article  PubMed  CAS  Google Scholar 

  • Lazaris, J.A., R.S. Goldberg & M.P. Kozlov, 1985. Studies on diabetes mellitus after ventromedial hypothalamic lesions in adult and aged rats. Endocrinol. Exp. 19: 67–76.

    Google Scholar 

  • Liebelt, R.A., K. Sekiba, A.G. Liebelt & J.H. Perry, 1960. Genetic susceptibility to goldthioglucose-induced obesity in mice. Proc. Soc. Expt. Biol. Med. 104: 689–694.

    Google Scholar 

  • Liebelt, R.A. & J.H. Perry, 1967. Action of gold thioglucose on the central nervous system. Handbook of Physiology Vol. 1 (Section 6), C.F. Code, Ed., pp. 271–285. Waverly Press, Baltimore.

    Google Scholar 

  • Leighton, B. & G.J.S. Cooper, 1988. Pancreatic amylin and calcitonin gene-related peptide cause resistance to insulin in skeletal muscle in vitro. Nature 335: 632–635.

    CAS  Google Scholar 

  • Leiter, E.H., F. Premdas, D.E. Harrison & L.G. Lipson, 1988. Aging and glucose homeostasis in C57BL/6J male mice. FASEB J. 2: 2807–2811.

    PubMed  CAS  Google Scholar 

  • Masoro, E.J., M.S. Katz & C.A. McMahan, 1989. Evidence for the glycation hypothesis of aging from the food-restricted rodent model. J. Gerontol. 44: B20 - B22.

    Article  PubMed  CAS  Google Scholar 

  • Meneilly, G.S., K.L. Minaker, D. Elahi & J.W. Rowe, 1987. Insulin action in aging man: Evidence for tissue-specific differences at low physiological insulin levels. J. Gerontol. 42: 196–201.

    Google Scholar 

  • Minaker, K.L., J.W. Rowe, R. Tonino & J.A. Pallotta, 1982. Influence of age on clearance of insulin in man. Diabetes 31: 851–855.

    Article  PubMed  CAS  Google Scholar 

  • Mobbs. C.V., K. Flurkey, D.M. Gee, K. Yamamoto, Y.N. Sinha & C.E. Finch, 1984. Estradiol-induced adult anovulatory syndrome in female C57BL/6J mice: Age-like neuroendocrine, but not ovarian, impairments. Biology of Reproduction 30: 556–563.

    Google Scholar 

  • Mobbs, C.V., D.M. Gee & C.E. Finch, 1984. Reproductive senescence in female C57BL/6J mice: Ovarian impairments and neuroendocrine impairments that are partially reversible and delayable by ovariectomy. Endocrinology 115: 1653–1662.

    Google Scholar 

  • Mobbs, C.V., D. Cheyney, Y.N. Sinha & C.E. Finch, 1985. Age-correlated and ovary-dependent changes in relationships between plasma estradiol and luteinizing hormone, prolactin & growth hormone in female C57BL/6J mice. Endocrinology 116: 813–820.

    Article  PubMed  CAS  Google Scholar 

  • Mobbs, C.V., 1989. Neurohumoral hysteresis as a mechanism for senescence; Comparative aspects. In: Scanes, C.G. & Schriebman, M.P. (Eds.) Development, Maturation & Senescence of the Neuroendocrine System. Academic Press, pp. 223–252.

    Google Scholar 

  • Mobbs, C.V., 1990. Neurotoxic effects of estrogen, glucose, and glucocorticoids: Neurohumoral hysteresis and its pathological consequences during aging. Reviews of Biological Research on Aging, Vol. 4, pp. 201–228.

    CAS  Google Scholar 

  • Mobbs, C.V., M. Kaplitt, L.-M. Kow & D.W. Pfaff, 1991. PLC-alpha as a common mediator of estrogen and other hormones. Molecular & Cellular Endocrinology. 80: C187 - C191.

    Article  CAS  Google Scholar 

  • Mobbs, C.V. & C.E. Finch, 1992. Estrogen-induced impairments as a mechanism in reproductive senescence of female C57B1/6J mice. J. Gerontol. 47: B48 - B51.

    CAS  Google Scholar 

  • Mobbs, C.V. & S.P. Kleopoulos, 1992. Regulation of hypothalamic neuropeptide Y, (NPY) by fasting during aging in male rats. Soc. Neurosci. Abs., Vol. 18: p. 1485.

    Google Scholar 

  • Mobbs, C.V. & H. Bergen, 1992. Glucose metabolism during aging in mice: Hypoglycemia and hyperinsulinemia. Endocrine Soc.Abs., 74th Ann. Meet. Prog. Abs., p. 370

    Google Scholar 

  • Mobbs, C.V., S.P. Kleopoulos & H. Bergen, 1993. Hypoglycemia precedes hyperglycemia during aging: effect of dietary enhancement and dietary restriction. Endocrine Soc. Abs., 75th Ann. Meet. Prog. Abs., p. 367.

    Google Scholar 

  • Mobbs, C.V., S.P. Kleopoulos & T. Funabashi, 1993. A glucokinase/ AP-1 glucose transduction mechanism in the ventromedial hypothalamic satiety center. Soc. Neurosci. Abs., Vol. 19 (in press).

    Google Scholar 

  • Modan, M., H. Helkin, H. Almog, A. Lusky, A. Eshkol, M. Shefi, A. Shitrit & Z. Fuchs, 1985. Hyperinsulinemia. A link between hypertension, obesity, and glucose intolerance. J. Clin. Invest. 75: 809–817.

    Google Scholar 

  • Neel, J.V., 1962. Diabetes mellitus: a thrify genotype rendered detrimental by `progress’? Am. J. Hum. Gen. 14: 353–362.

    Google Scholar 

  • Nelson, J., M.D. Bergman, K. Karelus & L.S. Felicio, 1987. Aging of the hypothalamic-pituitary-ovarian axis: Hormonal influences and cellular mechanisms. J. Steroid Biochem. 27: 699–705.

    Google Scholar 

  • Peng, M.T. & H.K. Hsu, 1982. No neuron loss from hypothalamic nuclei of male rats in old age. Gerontology 28: 19–22.

    CAS  Google Scholar 

  • Pfaff, D.W., 1972. Histological differences between ventromedial hypothalamic neurons of well-fed and underfed rats. Nature 223: 77–79.

    Article  Google Scholar 

  • Reaven, G.M. & E.P. Reaven, 1985. Age, glucose intolerance, and non-insulin-dependent diabetes mellitus. J. Am. Geriatr. Soc. 33: 286–290.

    Google Scholar 

  • Reaven, G.M., 1988. Role of insulin resistance in human disease. Diabetes 37: 1595–1607.

    Article  PubMed  CAS  Google Scholar 

  • Rizza, R.A., L.J. Mandarino, J. Genest, B.A. Baker & J.E. Ger-ich, 1985. Production of insulin resistance by hyperinsulinemia in man. Diabetologia 28: 70–75.

    PubMed  CAS  Google Scholar 

  • Rohner-Jeanrenaud, F. & B. Jeanrenaud, 1980. Consequences of ventromedial hypothalamic lesions upon insulin and glucagon secretion by subsequently isolated perfused pancreases in the rat. J. Clin. Invest. 65: 902–910.

    Google Scholar 

  • Rohner-Jeanrenaud, F. & B. Jeanrenaud, 1984. Oversecretion of glucagon by pancreases of hypothalamic-lesioned rats: A re-evaluation of a controversial topic. Diabetologia 27: 535–539.

    Google Scholar 

  • Rowe, J.W., K.L. Minaker, J. A., Pallota & J.S. Fliers, 1983. Characterization of the insulin resistance of aging. J. Clin. Invest. 71: 1581–1589.

    Google Scholar 

  • Rowe, J.W. & B.R.Troen, 1980. Sympathetic nervous system and aging in man. Endocrine Rev. 1: 167–178.

    CAS  Google Scholar 

  • Roy, S., R. Sala, E. Cagliero & M. Lorenzi, 1990. Overexpression of fibronectin induced by diabetes or high glucose: Phenomenon with a memory. Proc. Nat. Acad. Sci. 87: 404–408.

    Google Scholar 

  • Saad, M.F., D.J. Pettitt, D.M. Mott, W.C. Knowler, R.G. Nelson & P.H. Bennett, 1989. Sequential changes in serum insulin concentration during development of non-insulin-dependent diabetes. Lancet (17 June 1989 ): 1356–1358.

    Article  Google Scholar 

  • Sabel, B.A. & D.G. Stein, 1981. Extensive loss of subcortical neurons in the aging rat brain. Exp. Neurol. 73: 507–516.

    Google Scholar 

  • Sandberg, H., N. Yoshimine, S. Maeda, D. Symons & J. Zavodnick, 1973. Effects of an oral glucose load on serum immunoreactive insulin, free fatty acid, growth hormone, and blood sugar levels in young and elderly subjects. J. Am. Geriatr. Soc. 10: 433–438.

    Google Scholar 

  • Sartin, J.L & A.A. Lamperti, 1985. Neuron numbers in hypothalamic nuclei of young, middle-aged and aged male rats. Experientia 41: 109–111.

    CAS  Google Scholar 

  • Sapolsky, R.M., L. Krey & B.S. McEwen, 1986. The neuroendocrinology of stress and aging: The glucocorticoid cascade hypothesis. Endocr. Rev. 7: 284–301.

    Google Scholar 

  • Smith-West, C. & D.R. Garns, 1983. Diabetes-associated hypothalamic neuronal depopulation in the aging Chinese hamster. Dev. Brain Res. 9: 385–389.

    Google Scholar 

  • Soman, V.R. & R.A. De Fronzo, 1980. Direct evidence for downregulation of insulin receptors by physiologic hyperinsulinemia in man. Diabetes 29: 159–163.

    CAS  Google Scholar 

  • Surwit, R.S., C.M. Kuhn, C. Cochrane, J.A. McCubbin & M.N. Feinglos, 1988. Diet-induced Type II diabetes in C57B1/6J mice. Diabetes 37: 1163–1167.

    Article  PubMed  CAS  Google Scholar 

  • Surwit, R.S., M.F. Seldin, C.M. Kuhn, C. Cochrane & M.N. Feinglos, 1990. Control of expression of insulin resistance and hyperglycemia by different genetic factors in diabetic C57BL/6J mice. Diabetes 40: 82–87.

    Article  Google Scholar 

  • Tam, S.P., J.G. Hache & R.G. Deeley, 1986. Estrogen memory effect in human hepatocytes during repeated cell division without hormone. Science 234: 1234–1237.

    Article  PubMed  CAS  Google Scholar 

  • Tokuyama, Y, A. Kanatsuka, H. Ohsawa, T. Yamaguchi, H. Makin, S. Yoshida, H. Nagase & S. Inoue, 1991. Hypersecretion of islet amyloid polypeptide from pancreatic islets of ventromedial hypothalamic-lesioned rats & obese Zucker rats. Endocrinology 128: 2739–2744.

    Article  PubMed  CAS  Google Scholar 

  • Welborn, T.A., N.S. Stenhouse & C.G. Johnstone, 1969. Factors determining serum insulin response in a population sample. Diabetologia 5: 263–266.

    Article  PubMed  CAS  Google Scholar 

  • Westermark, P., C. Wernstedt, D.W. Wilander, T.D. O’Brien & K.H. Johnson, 1987. Amyloid fibrils in human insulinoma and islet of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc. Natl. Acad. USA 84: 3881–3885.

    Google Scholar 

  • Yam, D., 1992. Insulin-cancer relationships: Possible dietary implication. Medical Hypotheses 38: 111–117.

    Google Scholar 

  • Yao, K., Y. Uchigata, H. Kyono, H. Yokoyam, Y. Eguchi, H. Fukushima, K. Yamauchi & Y. Hirata, 1992. Human insulin-specific immunoglobulin-G antibody and hypoglycemic attacks after the injection of gold-thioglucose. J. Endo. Invest. 15: 43–48.

    Google Scholar 

  • Young, J.B. & L. Landberg, 1980. Impaired suppression of sympathetic activity during fasting in goldthioglucosetreated mouse. J. Clin. Invest. 65: 1086–1094.

    Google Scholar 

  • Yu, B.P., E.J. Masoro & C.A. McMahan, 1985. Nutritional influences on aging Fisher 344 rats. I. Physical, metabolic, and longevity characteristics. J. Gerontol. 40: 657–670.

    Google Scholar 

  • Zavaroni, I., E. Bonora, M. Pagleria, E. Dell’Aglio, L. Luchetti,G. Buonanno, A. Bonah, M. Bergonzeni, L. Gnudi, M. Passen & G. Reaven, 1989. Risk factors for coronary artery disease in healthy persons with hyperinsulinemia & normal glucose tolerance. New Engl. J. Med. 320: 702–706.

    Google Scholar 

  • Zawalich, W., 1990. Multiple effects of increases inphosphoinositide hydrolysis on islets and their relationship to changing patterns of insulin secretion. Diabetes Res. 12: 101–111.

    Google Scholar 

  • Zimmet, P. & S. Whitehouse, 1979. The effect of age on glucose tolerance. Diabetes 28: 617–628.

    CAS  Google Scholar 

  • Zimmet, P., G. Dowse & P. Bennet, 1991. Hyperinsulinemia is a predictor of non-insulin-dependent diabetes mellitus. Diabetes Metab. 17: 101–108.

    CAS  Google Scholar 

  • Zimmet, P.Z., 1992. Challenges in diabetes epidemiology- From West to the rest. Diabetes Care 15: 232–252.

    PubMed  CAS  Google Scholar 

  • Zimmet, P.Z., G.K., Dowse & C.F. Finch, 1990. The epidemiology and natural history of NIDDM- lessons from the South Pacific. Diabetes Metab. Rev. 6: 91–124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mobbs, C.V. (1994). Genetic influences on glucose neurotoxicity, aging, and diabetes: a possible role for glucose hysteresis. In: Rose, M.R., Finch, C.E. (eds) Genetics and Evolution of Aging. Contemporary Issues in Genetics and Evolution, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1671-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1671-0_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4416-7

  • Online ISBN: 978-94-017-1671-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics