Skip to main content

Part of the book series: Advances in Cellular and Molecular Biology of Plants ((CMBP,volume 2))

  • 287 Accesses

Abstract

The most famous, if not necessarily the first, description of gametophytic self-incompatibility in Petunia was given by Charles Darwin (1876), who noted:

... for protected flowers, with their own pollen placed on the stigma, never yielded nearly a full complement of seed; whilst those left uncovered produced fine capsules, showing that pollen from other plants must have been brought to them, probably by moths. Plants growing vigorously and flowering in pots in the greenhouse, never yielded a single capsule...

Since that time, Petunia,especially Petunia hybrida, has been a system of choice not only for many studies on gametophytic self-incompatibility, but also for research in different areas of plant molecular genetics (Linskens 1975; de Nettancourt 1977; Hanson and Kool 1984). There are several reasons for the popularity of this organism for experimental studies. The plant is grown easily under a variety of greenhouse conditions and clonal stocks are easily propagated by vegetative cuttings. Flowering in Petunia is indeterminate, non-obligate (quantitative, LDP) for photoperiod (Armitage 1985), and the plants flower profusely. The large size of flowers and floral organs makes collection of material for biochemical studies relatively painless. Petunia hybrida varieties are readily transformed using vectors from Agrobacterium tumefaciens,and transformed cells easily regenerated to give fertile plants (Horsch et al. 1988). Because of the long history of Petunia as a garden bedding plant, a wide variety of genetic material is available. This includes the di-haploid Petunia hybrida cv. Mitchell, used for a majority of molecular genetic studies, commercial hybrid lines, and inbred lines. In addition to Petunia hybrida, non-commercial Petunia species have been used for studies of gametophytic self-incompatibility as well as for investigations of Petunia taxonomy (Ascher 1984; Sink 1984; Ai et al. 1990). Several of the Petunia species having 2n = 14 chromosomes, can form sexual or somatic hybrids with each other (Hanson and Kool 1984). Besides P. hybrida,these include: P. inflata, P. axillaris, P. violacea,P. parodii, and P. parvora.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ai, Y., Singh, A., Coleman, C.E., Ioerger, T.R., Kheyr-Pour, A. and Kao, T.-H. (1990) Self-incompatibility in Petunia inflata: Isolation and characterization of cDNAs encoding three Sallele-associated proteins. Sex. Plant Reprod. 3: 130–138.

    Google Scholar 

  • Ai, Y., Kron, E. and Kao, T.-H. (1991) S-alleles are retained and expressed in a self-compatible cultivar of Petunia hybrida. Mol. Gen. Genet. 230: 353–358.

    Google Scholar 

  • Anderson, M.A., McFadden, G.I., Bernatsky, R., Atkinson, A., Orpin, T., Dedman, H., Tregear, G., Fernley, R. and Clarke, A.E. (1989) Sequence variability of three alleles of the self-incompatibility gene of Nicotiana alata. The Plant Cell 1: 483–491.

    PubMed  CAS  Google Scholar 

  • Armitage, A.M. (1985) Petunia. In: A.H. Halevy (ed.), CRC Handbook of Flowering, vol. 4, pp. 4146. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Ascher, P.D. (1984) Self-incompatibility. In K.C. Sink (ed.), Petunia: Monographs on Theoretical and Applied Genetics, vol. 9, pp. 92–109, Springer-Verlag, Berlin.

    Google Scholar 

  • Broothaerts, W.J., van Laere, A., Witters, R., Preaux, G., Decock, B., van Damme, J. and Vendrig, J.C. (1990) Purification and N-terminal sequencing of style glycoproteins associated with self-incompatibility in Petunia hybrida. Plant Mol. Biol. 14: 93–102.

    Google Scholar 

  • Clark, A.G. and Kao, T.-H. (1991) Excess nonsynonomous substitution at shared polymorphic sites among self-incompatibility alleles of Solanaceae. Proc. Natl. Acad. Sci. U.S.A. 88: 9823–9827.

    Google Scholar 

  • Clark, K.R. (1991) Molecular characterization of S-locus expression in Petunia hybrida. Ph.D. thesis. Department of Molecular Genetics, Ohio State University.

    Google Scholar 

  • Clark, K.R., Okuley, J.J., Collins, P.D. and Sims, T.L. (1990) Sequence variability and developmental expression of S-alleles in self-incompatible and pseudo-self-compatible petunia. The Plant Cell 2: 815–826.

    PubMed  CAS  Google Scholar 

  • Cornish, E.C., Pettitt, J.M., Bonig, I. and Clarke, A.E. (1987) Developmentally controlled expression of a gene associated with self-incompatibility in Nicotiana alata. Nature 326: 99–102.

    Article  CAS  Google Scholar 

  • Dana, M.N. and Ascher, P.D. (1986a) Sexually localized expression of pseudo-self compatibility (PSC) in Petunia x hybrida hort. 1. Pollen inactivation. Theor. Appl. Genet. 71: 573–577.

    Google Scholar 

  • Dana, M.N. and Ascher, P.D. (1986b) Sexually localized expression of pseudo-self compatibility (PSC) in Petunia x hybrida hort. 2. Stylar inactivation. Theor. Appl. Genet. 71: 578–584.

    Google Scholar 

  • Darwin, C. (1876) The Effects of Cross and Self Fertilisation in the Vegetable Kingdom. John Murray, London, p. 188.

    Google Scholar 

  • Dayhoff, M.O., Schwartz, R.M. and Orcutt, B.C. (1979) A model of evolutionary change in proteins. ln: M.O. Dayhoff (ed.), Atlas of Protein Sequence and Structure, vol. 5, pp. 345–352. National Biomedical Research Foundation, Washington, DC.

    Google Scholar 

  • de Nettancourt, D. (1977) Incompatibility in Angiosperms. In: R. Frankel, G.A.E. Gall, M. Grossman and H.F Linskens (eds.), Monographs on Theoretical and Applied Genetics, vol. 3. Springer-Verlag, Berlin.

    Google Scholar 

  • Deurenberg, J.J.M. (1976) In vitro protein synthesis with polysomes from unpollinated, cross- and self-pollinated Petunia ovaries. Planta 128: 29–33.

    Google Scholar 

  • Devereux, J., Haeberli, P. and Smithies, O. (1984) A comprehensive set of sequence analysis programs for the VAX. Nucl. Acids Res. 12: 387–395.

    Google Scholar 

  • Flaschenreim, D.R. and Ascher, P.D. (1979a) Pollen tube expression of pseudo-self-compatibility (PSC) in Petunia hybrida. Theor. Appl. Genet. 54: 97–101.

    Google Scholar 

  • Flaschenreim, D.R. and Ascher, P.D. (1979b) S-allele discrimination in styles of Petunia hybrida bearing stylar-conditioned pseudo-self-compatibility. Theor. Appl. Genet. 55: 23–28.

    Google Scholar 

  • Goldberg, R.B., Hoschek, G., Kamalay, J.C. and Timberlake, W.E. (1978) Sequence complexity of nuclear and polysomal RNA in leaves of the tobacco plant. Cell 14: 123–131.

    Article  PubMed  CAS  Google Scholar 

  • Gray, J.E., McClure, B.A., Bonig, I., Anderson, M.A. and Clarke, A.E. (1991) Action of the style product of the self-incompatibility gene of Nicotiana alata (S-RNase) in in vitro-grown pollen tubes. The Plant Cell 3: 271–283.

    PubMed  CAS  Google Scholar 

  • Hanson, M.R. and Kool, A.J. (1984) Molecular Biology. In: K.C. Sink (ed.), Petunia: Monographs on Theoretical and Applied Genetics, vol. 9, pp. 155–179. Springer-Verlag, Berlin.

    Google Scholar 

  • Haring, V., Gray, J.E., McClure, B.A., Anderson, M.A. and Clarke. A.E. (1990) Selfincompatibility: a self-recognition system in plants. Science 250: 937–941.

    Article  PubMed  CAS  Google Scholar 

  • Herrero, M. and Dickinson, H.G. (1979) Pollen-pistil incompatibility in Petunia hybrida: changes in the pistil following compatible and incompatible intraspecific crosses. J. Cell Sci. 36: 1–18.

    PubMed  CAS  Google Scholar 

  • Herrero, M. and Dickinson, H.G. (1980) Pollen tube growth following compatible and incompatible intraspecific pollinations in Petunia hybrida. Planta 148: 217–221.

    Article  Google Scholar 

  • Herrero, M. and Dickinson, H.G. (1981) Pollen tube development in Petunia hybrida following compatible and incompatible intraspecific matings. J. Cell Sci. 47: 365–383.

    PubMed  CAS  Google Scholar 

  • Horiuchi, H., Yanai, K., Takagi, M., Yano, K., Wakabayashi, E., Sanda, A. et al. (1988) Primary structure of a base non-specific ribonuclease from Rhizopus niveus. J. Biochem. 103: 408–414.

    PubMed  Google Scholar 

  • Horsch, R.B., Fry, J., Hoffman, N., Niedermeyer, J., Rogers, S.G. and Fraley, R.T. (1988) Leaf disc transformation. In: S.B. Gelvin and R.A. Schilperoot (eds.), Plant Molecular Biology Manual, A5, pp. 1–9. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Ide, H., Kimura, M., Arai, M. and Funatsu, G. (1991) The complete amino acid sequence of ribonuclease from the seeds of bitter gourd (Momordica charantia). FEBS Lett. 284: 161–164.

    Article  PubMed  CAS  Google Scholar 

  • Ioerger, T.R., Gohlke, J.R., Xu, B. and Kao, T.-H. (1991) Primary structural features of the selfincompatibility protein in the solanaceae. Sex. Plant Reprod. 4: 81–87.

    Google Scholar 

  • Jahnen, W., Lush, W.M. and Clarke, A.E. (1989) Inhibition of pollen tube growth by isolated Sglycoproteins of Nicotiana alata. The Plant Cell 1: 501–510.

    PubMed  CAS  Google Scholar 

  • Jefferson, R.A. (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387–405.

    Google Scholar 

  • Jefferson, R.A., Burgess, S.M. and Hirsh, D.A. (1986) ß-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc. Natl. Acad. Sci. U.S.A. 83: 8447–8451.

    Google Scholar 

  • Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. (1987) GUS fusions: ß-glucuronidase as a sensitive and versatile gene marker in higher plants. EMBO J. 6: 3901–3907.

    PubMed  CAS  Google Scholar 

  • Jost, W., Bak, M., Glund, K., Terpstra, P. and Beintema, J.J. (1991) Amino acid sequence of an extracellular phosphate-starvation-induced RNase from cultured tomato (Lycopersicon esculentum) cells. Eur. J. Bioch. 198: 1–6.

    Google Scholar 

  • Kamboj, R.K. and Jackson, J.F. (1986) Self-incompatibility alleles control a low molecular weight basic protein in pistils of Petunia hybrida. Theor. Appl. Genet. 71: 815–819.

    Google Scholar 

  • Kaufmann, H., Kirch, H.-H., Wenner, T. and Thompson, R. (1991) The relationship of major pistil proteins of Solanum tuberosum to self-incompatibility. In: R.B. Hallick (ed.), Third International Congress of Plant Molecular Biology, Abstracts, No. 37, International Society for Plant Molecular Biology, Tucson.

    Google Scholar 

  • Kawata, Y, Sakiyama, F. and Tamaoki, H. (1988) Amino-acid sequence of ribonuclease T2 from Aspergillus oryzae. Eur. J. Biochem. 176: 683–697.

    Google Scholar 

  • Kheyr-Pour, A., Bintrim, S.B., Ioerger, T.R., Remy, R., Hammond, S.A. and Kao, T.-H. (1990) Sequence diversity of pistil S-proteins associated with gametophytic self-incompatibility in Nicotiana alata. Sex. Plant Reprod. 3: 88–97.

    Google Scholar 

  • Klein, T.M., Gradziel, T., Fromm, M.E. and Sanford, J.C. (1988) Factors influencing gene delivery into Zea mays cells by high-velocity microprojectiles. Bio/technology 6: 559–563.

    Article  CAS  Google Scholar 

  • Kovaleva, L.V. (1983) The protein self-incompatibility factor in petunia styles. Dokl. Nauk Akad. SSSR 272: 1017–1020.

    Google Scholar 

  • Kovaleva, L.V. and Musatova, N.A. (1975) Ribonuclease activity in the generative organs of petunia in connection with the formation of the mechanism of autoincompatibility. Dokl. Nauk Akad. SSSR 223: 762–765.

    Google Scholar 

  • Kovaleva, L.V., Milyaeva, E.L. and Chailakhyan, M.Kh. (1978) Overcoming self-incompatibility by inhibitors of nucleic acid and protein metabolism. Phytomorphology 28: 445–449.

    CAS  Google Scholar 

  • Linskens, H.F. (1975) Incompatibility in Petunia. Proc. R. Soc. London Ser. B. 188: 299–311. Mau, S-L., Williams, E.G., Atkinson, A., Anderson, M.A., Cornish, E.C., Grego, B. et al. (1986)

    Google Scholar 

  • Style proteins of a wild tomato (Lycopersicon peruvianum) associated with expression of selfincompatibility. Planta 169: 184–191

    Google Scholar 

  • McClure, B.A., Haring, V., Ebert, P.R., Anderson, M.A., Simpson, R.J., Sakiyama, F. and Clarke, A.E. (1989) Style self-incompatibility gene products of Nicotiana alata are ribonucleases. Nature 342: 955–957.

    Article  PubMed  CAS  Google Scholar 

  • McClure, B.A., Gray, J.E., Anderson, M.A. and Clarke, A.E. (1990) Self-incompatibility in Nicotiana alata involves degradation of pollen rRNA. Nature 347: 757–760.

    Article  CAS  Google Scholar 

  • Mu, J., Singh, A. and Kao, T.-H. (1991) Expression of Petunia inflata proteins in the baculovirus expression system. In R.B. Hallick (ed.), Third International Congress of Plant Molecular Biology, Abstracts, No. 534, International Society for Plant Molecular Biology, Tucson.

    Google Scholar 

  • Napoli, C., Lemieux, C. and Jorgensen, R. (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. The Plant Cell 2: 279–289.

    PubMed  CAS  Google Scholar 

  • Nielsen, N.C., Dickinson, C.D., Cho, T.-J., Thanh, V.H., Scallon, B.J., Fischer, R.L. et al. (1989) Characterization of the glycinin gene family in soybean. The Plant Cell 1: 313–328.

    PubMed  CAS  Google Scholar 

  • Okamuro, J.K., Jofuku, K.D. and Goldberg, R.B. (1986) Soybean seed lectin gene and flanking nonseed protein genes are developmentally regulated in transformed tobacco plants. Proc. Natl. Acad. Sci. U.S.A. 83: 8240–8244.

    Google Scholar 

  • Okuley, J.J. (1991) Structure, function, and organization of the self-incompatibility locus of Petuniahybrida. Ph.D. thesis. Department of Molecular Genetics, Ohio State University.

    Google Scholar 

  • Okuley, J.J. and Sims, T.L. (1991) A pollen transcript is closely linked to the S-locus in selfincompatible petunia. Plant Physiol. 96: S5.

    Google Scholar 

  • Read, S.M., Bacic, A. and Clarke, A.E. (1991) Control of morphology and nuclear division in cultured tobacco pollen tubes. Plant Physiol. 96S: 172.

    Article  Google Scholar 

  • Shivanna, K.R. and Ranganswamy, N.S. (1969) Overcoming self-incompatibility in Petunia axillaris. I. Delayed pollination, pollination with stored pollen, and bud pollination. Phytomorph. 19: 372–380.

    Google Scholar 

  • Singh, A., Ai, Y. and Kao, T.-H. (1991) Characterization of ribonuclease activity of three S-allele associated proteins of Petunia inflata. Plant Physiol. 96: 61–68.

    Article  PubMed  CAS  Google Scholar 

  • Sink, K.C. (1984) Taxonomy. In: K.C. Sink (ed.), Petunia: Monographs on Theoretical and Applied Genetics, vol. 9, pp. 3–9. Springer-Verlag, Berlin.

    Google Scholar 

  • Taylor, C.B. and Green, P.J. (1991) Genes with homology to fungal and S-gene RNases are expressed in Arabidopsis thaliana. Plant Physiol. 96: 980–984.

    Article  PubMed  CAS  Google Scholar 

  • Twell, D., Klein, T.M., Fromm, M.E. and McCormick, S. (1989) Transient expression of chimeric genes delivered into pollen by microprojectile bombardment. Plant Physiol. 91: 1270–1274.

    Article  PubMed  CAS  Google Scholar 

  • van der Donk, J.A.W.M. (1974a) Differential synthesis of RNA in self- and cross-pollinated styles of Petunia hybrida L. Mol. Gen. Genet. 131: 1–8.

    Google Scholar 

  • van der Donk, J.A.W.M. (1974b) Synthesis of RNA and protein as a function of time and type of pollen tube - style interaction in Petunia hybrida L. Mol. Gen. Genet. 134: 93–98.

    Google Scholar 

  • van der Donk, J.A.W.M. (1975) Recognition and gene expression during the self-incompatibility reaction in Petunia hybrida L. Mol. Gen. Genet. 141: 305–316.

    Google Scholar 

  • van der Krol, A.R., Mur, L.A., Beld, M., Mol, J.N.M. and Stuitje, A. (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. The Plant Cell 2: 291–299.

    PubMed  Google Scholar 

  • Watanabe, H., Naitoh, A., Suyama, Y., Inokuchi, N., Shimada, H., Koyama, T. et al. (1990) Primary structure of a base non-specific and adenylic preferential ribonuclease from Aspergillus saitoi. J. Biochem. 108: 303–310.

    PubMed  CAS  Google Scholar 

  • Zambryski, P., Joos, H., Genetello, C., Leemans, J., Van Montagu, M. and Schell, J. (1983) Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J. 2: 2143–2150.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sims, T.L. (1994). Molecular genetics of gametophytic self-incompatibility in Petunia hybrida . In: Williams, E.G., Clarke, A.E., Knox, R.B. (eds) Genetic control of self-incompatibility and reproductive development in flowering plants. Advances in Cellular and Molecular Biology of Plants, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1669-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1669-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4340-5

  • Online ISBN: 978-94-017-1669-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics