Skip to main content

Part of the book series: Advances in Cellular and Molecular Biology of Plants ((CMBP,volume 2))

Abstract

The genetic control of floral development has been a field which has seen remarkable progress in recent years, largely due to the efforts of Meyerowitz and Coen and their colleagues, working with Arabidopsis thaliana and Antirrhinum majus, respectively. The research has developed consistent testable genetic models of the control of the identity of the organs in the floral whorls. It has also led to the molecular cloning of several of these loci with subsequent identification of some of the gene products as transcription factors. This research has been inspiring, and has lead to a resurgence of mutational analysis of a number of aspects of floral development, beyond the genes that control organ identity within the floral whorls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alvarez, J., Guli, C.L., Yu, X.H. and Smyth, D.R (1992) Terminal flower, a gene affecting inflorescence development in Arabidopsis thaliana. Plant J. 2: 103–116.

    Article  Google Scholar 

  • Bomminieni, V.R. and Greyson, R.I. (1990) Regulation of flower development in cultured ears of maize. Sex. Plant Reprod. 3: 109–115.

    Google Scholar 

  • Bonnett, H.T., Kofer, W., H$kanson, G. and Glimelius, K. (1991) Mitochondrial involvement in petal and stamen development studied by sexual and somatic hybridization of Nicotiana species. Plant Sci. 80: 119–130.

    CAS  Google Scholar 

  • Bowman, J.L., Drews, G.N. and Meyerowitz, E.M. (1991) Expression of the Arabidopsis floral homeotic gene agamous is restricted to specific cell types late in flower development. Plant Cell 3: 749–758.

    PubMed  CAS  Google Scholar 

  • Bowman, J.L., Sakai, H., Jack, T., Weigel, D., Mayer, U. and Meyerowitz, E.M. (1992) Superman, a regulator of floral homeotic genes in Arabidopsis. Development 114: 599–615.

    PubMed  CAS  Google Scholar 

  • Carpenter, R. and Coen, E.S. (1990) Floral homeotic mutations produced by transposon mutagenesis in Antirrhinum majus. Genes and Development 4: 1483–1493.

    Article  PubMed  CAS  Google Scholar 

  • Coe, E.H., Jr., Neuffer, M.G. and Hoisington, D.A. (1988) The genetics of corn. In: G.F. Sprague and J.W. Dudley (eds.), Corn and Corn Improvement, 3rd edition, pp. 81–258. American Society of Agronomy, Madison, WI.

    Google Scholar 

  • Coen, E.S. (1991) The role of homeotic genes in flower development and evolution. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42: 241–279.

    Google Scholar 

  • Coen, E.S. and Meyerowitz, E.M. (1991) The war of the whorls–genetic interactions controlling flower development. Nature 353: 31–37.

    Article  PubMed  CAS  Google Scholar 

  • Coen, E.S., Romero, J.M., Doyle, S., Eilliot, R., Murphy, G. and Carpenter, R. (1990) Floricaula: a homeotic gene requred for floral development in Antirrhinum majus. Cell 63: 1311–1322.

    Article  PubMed  CAS  Google Scholar 

  • Dawe, R.K. and Freeling, M. (1990) Clonal analysis of the cell lineages in the male flower of maize. Dev. Biol. 142: 233–245.

    Article  PubMed  CAS  Google Scholar 

  • Dawe, R.K. and Freeling, M. (1991) Cell lineage and its consequences in higher plants. The Plant J. 1: 3–8.

    Article  Google Scholar 

  • Dellaporta, S.L., Moreno, M.A. and Delong, A. (1992) Cell lineage analysis of the gynoecium of maize using the transposable element Ac. Development (S2): 141–147.

    Google Scholar 

  • Emerson, R.A. (1920) Heritable characters of maize. II. Pistillate flowered maize parts. J. Hered. 11: 65–76.

    Google Scholar 

  • Evans, P.T. and Malmberg, R.L. (1989) Alternative pathways of tobacco placental development: time of commitment and analysis of a mutant. Dev. Biol. 136: 273–283.

    Article  PubMed  CAS  Google Scholar 

  • Evans, P.T., Holaway, B.L. and Malmberg, R.L. (1988) Biochemical differentiation in the tobacco flower probed with monoclonal antibodies. Planta 175: 259–269.

    Article  Google Scholar 

  • Feldmann, K.A. (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. The Plant J. I: 71–82.

    Google Scholar 

  • Fraser, A.C. (1933) Heritable characters of maize. XXIII. Silky ears. J. Hered. 24: 41–46.

    Google Scholar 

  • Gasser, C.S. (1991) Molecular studies on the differentiation of floral organs. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42: 621–649.

    Article  CAS  Google Scholar 

  • Gasser, C., Budelier, K., Smith, A., Shah, D. and Fraley, R. (1989) Isolation of tissue-specific cDNAs from tomato pistils. Plant Cell 1: 15–24.

    PubMed  CAS  Google Scholar 

  • Gerstel, D. (1980) Cytoplasmic male sterility in Nicotiana, a review. NC ARS Tech Bull 263.

    Google Scholar 

  • Hanson, D., Hamilton, D., Travis, J., Bashe, D. and Mascarenhas, J. (1989) Characterization of a pollen-specific cDNA clone from Zea mays and its expression. Plant Cell 1: 173–179.

    PubMed  CAS  Google Scholar 

  • Heslop-Harrison, J. (1964) Sex expression in flowering plants. Brookhaven Symp. in Biol. 16: 109–125.

    Google Scholar 

  • Hicks, G.S. (1975) Carpelloids on tobacco stamen primordia in vitro. Can. J. Bot. 53: 77–81.

    Article  Google Scholar 

  • Hicks, G.S. (1979) Feminised outgrowths on the stamen primordia of tobacco in vitro. Plant Sci. Lett. 17: 81–89.

    Article  Google Scholar 

  • Hicks, G.S. (1982) Development of tobacco carpel primordia in vitro. Ann. Bot. 50: 291–300.

    Google Scholar 

  • Hicks, G.S. and McHughen, A. (1974) Altered morphogenesis of placental tissues of tobacco in vitro: stigmatoid’and carpelloid outgrowths. Planta 121: 193–196.

    Article  Google Scholar 

  • Hicks, G.S. and McHughen, A. (1977) Ovule development in vitro from isolated tobacco placental tissue. Plant Sci. Lett. 8: 141–145.

    Article  Google Scholar 

  • Hicks, G.S. and Sussex, I.M. (1970) Development in vitro of excised flower primordia of Nicotiana tabacum. Can. J. Bot. 48: 133–139.

    Article  Google Scholar 

  • Hicks, G.S. and Sussex, I.M. (1971) Organ regeneration in sterile culture after median bisection of the flower primordia of Nicotiana tabacum. Bot. Gaz. 132: 350–363.

    Article  Google Scholar 

  • Hicks, G.S., Bell, J. and Sand, S.A. (1977) A developmental study of the stamens in a male sterile tobacco hybrid. Can. J. Bot. 55: 2234–2244.

    Article  Google Scholar 

  • Huijser, P., Klein, P., Lonnig, W.E., Meijer, H., Saedler, H. and Sommer, H. (1992) Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum-majus. EMBO J. 11: 1239–1249.

    PubMed  CAS  Google Scholar 

  • Irish, E.E. and Nelson, T.M. (1991) Identification of multiple stages in the conversion of maize meristems from vegetative to floral development. Development 112: 891–898.

    Google Scholar 

  • Irish, V.F. and Nelson, T.M. (1989) Sex determination in monoecious and dioecious plants. Plant Cell 1: 737–744.

    PubMed  Google Scholar 

  • Irish, V.F. and Sussex, I.M. (1990) Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell 2: 741–753.

    PubMed  CAS  Google Scholar 

  • Jones D.F. (1925) Heritable characters of maize. XXIII. Silkless. J. Hered. 5: 339–341.

    Google Scholar 

  • Kamalay, J.C. and Goldberg, R.B. (1984) Organ-specific nuclear RNAs in tobacco. PNAS-USA 81: 2801–2805.

    Article  PubMed  CAS  Google Scholar 

  • Kaur-Sawhney, R., Tiburcio AF and Galston AW (1988) Spermidine and flower-bud differentiation in thin-layer explants of tobacco. Planta 173: 282–284.

    Article  CAS  Google Scholar 

  • Kaur-Sawhney, R., Kandpal, G., McGonigle, B. and Galston, A.W. (1990) Further experiments on spermidine-mediated floral-bud formation in thin-layer explants of Wisconsin 38 tobacco. Planta 181: 212–215.

    Article  CAS  Google Scholar 

  • Kelly, A.J., Zagotta, M.T., White, R.A., Chang, C. and Meeks-Wagner, D.R. (1990) Identification of genes expressed in the tobacco shoot apex during the floral transition. Plant Cell 2: 963–972.

    PubMed  CAS  Google Scholar 

  • Kimble, J. and Schedl, T. (1988) Developmental genetics of Caenorhabditis elegans. In: G. Malacinski (ed.), Developmental Genetics of Higher Organisms, ch. 8. Macmillan, New York.

    Google Scholar 

  • Kofer, W., Glimelius, K. and Bonnett, H. (1990) Modifications of floral development in tobacco induced by fusion of protoplasts of different male-sterile. Theor. Appl. Genet. 79: 97–102.

    Article  Google Scholar 

  • Kofer, W., Glimelius, K. and Bonnett, H. (1991a) Restoration of normal stamen development and pollen formation by fusion of different cytoplasmic male-sterile cultivars. Theor. Appl. Genet. 79: 97–102.

    Google Scholar 

  • Kofer, W., Glimelius, K. and Bonnett, H. (1991b) Modifications of mitochondrial DNA cause changes in floral development in homeotic-like mutants of tobacco. Plant Cell 3: 759–769.

    PubMed  CAS  Google Scholar 

  • Koltunow, A.M., Truettner, J., Cox, K.H., Wallroth, M. and Goldberg, R.B. (1990) Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2: 1201–1224.

    PubMed  CAS  Google Scholar 

  • Kuckuck, H. and Schick, R. (1930) Die Erbfaktoren beim Antirrhinum majus und ihre Bezeichnung. S. Indukt. Abstamm. Verebungsl. 56: 51–83.

    Google Scholar 

  • LaRue, C.D. (1942) The rooting of flowers in sterile culture. Bull. Torrey Bot. Club 69: 332–341.

    Article  Google Scholar 

  • Ledin, R.B. (1954) The vegetative shoot apex of Zea mays. Am. J. Bot. 41: 11–17.

    Article  Google Scholar 

  • Lotan, T., Ori, N. and Fluhr, R. (1989) Pathogenesis related proteins are developmentally regulated in tobacco flowers. Plant Cell 1: 881–887.

    PubMed  CAS  Google Scholar 

  • Ma, H., Yanofsky, M.F., Meyerowitz, E.M. (1991) AGL1–6, a family of Arabidopsis genes with similarity to floral homeotic and transcription factor genes. Genes and Develop. 5: 484–495.

    Article  CAS  Google Scholar 

  • Malmberg, R.L. and Rose, D.J. (1987) Biochemical genetics of resistance to MGBG in tobacco: mutants that alter SAM decarboxylase or polyamine ratios and floral morphology. Mol. Gen. Genet. 207: 9–14.

    Article  CAS  Google Scholar 

  • Malmberg, R.L., Mclndoo, J., Hiatt, A.C. and Lowe, B.A. (1985) Genetics of polyamine synthesis in tobacco–developmental switches in the flower. Cold Spring Harbor Symp. on Quantitative Biol. 50: 475–482.

    Article  CAS  Google Scholar 

  • Marfà, V., Gollin, D., Eberhard, S., Mohnen, D., Darvill, A. and Albersheim, P. (1991) Oligogalacturonides are able to induce flowers to form on tobacco explants. Plant J. 1: 217–225.

    Article  Google Scholar 

  • Martin, C., Carpenter, R., Sommer, H., Saedler, H. and Coen, E. (1985) Molecular analysis of instability in flower pigmentation of Antirrhinum majus following isolation of the pallida locus by transposon tagging. EMBO J. 4: 1625–1630.

    PubMed  CAS  Google Scholar 

  • Martinez, E. and Ramos, C.H. (1989) Lacandoniaceae (Triuridales): una neuva familia de Mexico. Ann. Missouri Bot. Gard. 76: 128–135.

    Article  Google Scholar 

  • Matsuzaki, T., Koiwai, A., Iwai, S. and Yamada, Y. (1984) In vitro proliferation of stigma-like, style-like structures of Nicotiana tabacum and its fatty acid composition. Plant Cell Physiol. 25: 197–203.

    CAS  Google Scholar 

  • McCormick, S., Smith, A., Gasser, C., Sachs, K., Hinchee, M., Horsch, R. and Fraley, R. (1987) Identification of genes specifically expressed in reproductive organs of tomato. In: D.J. Niven and R.A. Jones (eds.), Tomato Biotechnology, pp. 255–265. Alan R. Liss, New York.

    Google Scholar 

  • McDaniel, C.N. and Poethig, R.S. (1988) Cell lineage patterns in the shoot apical meristem of the germinating maize embryo. Planta 175: 13–22.

    Article  Google Scholar 

  • McHughen, A. (1977) Development of tobacco petals in vitro. Ann. Bot. 41: 1073–1076.

    Google Scholar 

  • McHughen, A. (1980) The regulation of tobacco floral organ initiation. Bot. Gaz. 141: 389–395.

    Article  Google Scholar 

  • McHughen, A. (1982) Some aspects of growth characteristics of tobacco pistils in vitro. J. Experiment. Bot. 33: 162–169.

    Article  Google Scholar 

  • Meeks-Wagner, D.R., Dennis, E.S., Tran Thanh Van, K. and Peacock, W.J. (1989) Tobacco genes expressed during in vitro floral initiation and their expression during normal plant development. Plant Cell 1: 25–35.

    PubMed  CAS  Google Scholar 

  • Meyerowitz, E.M., Bowman, J.L., Brockman, L.L., Drews, G.N., Jack, T., Sieburth, L.E. and Wiegel, D. (1991) A genetic and molecular model for flower development in Arabidopsis thaliana. Development 112: 157–168.

    Google Scholar 

  • Mohnen, D., Eberhard, S., Marfà, V., Doubrava, N., Toubart, P., Gollin, D. et al. (1990) The control of root, vegetative shoot, and flower morphogenesis in tobacco thin cell-layer explants (TCLs). Development 108: 191–201.

    PubMed  CAS  Google Scholar 

  • Neale, A.D., Wahleithner, J.A., Lund, M., Bonnett, H.T., Kelly, A., Meeks-Wagner, D.R. et al. (1990) Chitinase, β-1,3-glucansase, osmotin, and extensin are expressed in tobacco explants during flower formation. Plant Cell 2: 673–684.

    PubMed  CAS  Google Scholar 

  • Newton, K.J. (1988) Plant mitochondria] genomes: Organization, expression and variation. Ann. Rev. Plant Physiol. Plant Mol. Biol. 39: 503–532.

    Article  CAS  Google Scholar 

  • Nickerson, N.H. and Dale, E.E. (1955) Tassel modifications in Zea mays. Ann. Missouri Bot. Gard. 42: 195–212.

    Article  Google Scholar 

  • Okada, K., Komaki, M.K. and Shimura, Y. (1989) Mutational analysis of pistil structure and development of Arabidopsis thaliana. Cell Differ. Development 28: 27–38.

    Article  CAS  Google Scholar 

  • Pasqua, G., Monacelli, B. and Altamura, M.M. (1991) Influence of pH on flower and vegetative bud initiation and development in vitro. Cytobios 68: 111–121.

    Google Scholar 

  • Pennell, R.I. and Roberts, K. (1990) Sexual development in the pea is presaged by altered expression of arabinogalactan protein. Nature 344: 547–549.

    Article  Google Scholar 

  • Pnueli, L., Abu-Abeid, M., Zamir, D., Nacken, W., Schwarz-Sommer, Z. and Lifschitz, E. (1991) The MADS box gene family in tomato: Temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant J. 1: 255–266.

    Article  PubMed  CAS  Google Scholar 

  • Poethig, R.S. (1987) Clonal analysis of cell lineage patterns in plant development. Am. J. Bot. 74: 581–594.

    Article  Google Scholar 

  • Poethig, R.S. (1989) Genetic mosaics and cell lineage analysis in plants. Trends Genet. 5: 273–277.

    Article  PubMed  CAS  Google Scholar 

  • Rastogi, R. and Sawhney, V.K. (1988) Flower culture of a male sterile stamenless 2 mutant of tomato. Am. J. Bot. 75: 513–518.

    Article  Google Scholar 

  • Rosenberg, S.M. and Bonnett, H.T. (1983) Floral organogenesis in Nicotiana tabacum, a comparison of two cytoplasmic male sterile cultivars with a male fertile cultivar. Am. J. Bot. 70: 266–275.

    Article  Google Scholar 

  • Satina, S. and Blakeslee, A.F. (1941) Periclinal chimeras in Datura stramonium in relation to development of leaf and flower. Am. J. Bot. 28: 862–871.

    Article  Google Scholar 

  • Satina, S., Blakeslee, A.F. and Avery, A.G. (1940) Demonstration of three germ layers in the shoot apex of Datura by means of induced polyploidy in periclinal chimeras. Am. J. Bot. 44: 311–317.

    Google Scholar 

  • Schultz, E.A. and Haughn, G.W. (1991) Leafy, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant cell 3: 771–781.

    PubMed  Google Scholar 

  • Schultz, E.A., Pickett, F.B. and Haughn, G.W. (1991) The FLO10 gene product regulates the expression domain of homeotic genes AP3 and Pl in Arabidopsis flowers. Plant Cell 3: 1221–1237.

    PubMed  CAS  Google Scholar 

  • Schwarz-Sommer, Z, Huijser, P., Nacken, W., Saedler, H. and Sommer, H. (1990) Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250: 931–936.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz-Sommer, Z., Hue, I., Huijser, P., Flor, P.J., Hansen, R., Tetens, F. et al. (1992) Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens - evidence for DNA-binding and autoregulation of its persistent expression throughout flower development. EMBO J. 11: 251–263.

    PubMed  CAS  Google Scholar 

  • Shannon, S. and Meeks-Wagner, D.R. (1991) A mutation in the Arabidopsis tfll gene affects inflorescence meristem development. Plant Cell 3:. 877–892.

    PubMed  CAS  Google Scholar 

  • Siegel, B.A. and Verbeke, J.A. (1989) Diffusible factors essential for epidermal cell redifferentiation in Catharanthus roseus. Science 244: 580–582.

    Article  PubMed  CAS  Google Scholar 

  • Sommer, H., Beltran, J., Huijser, P., Pape, H., Lonnig, W., Saedler, H. and Schwarz-Sommer, Z. (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: The protein shows homology to transcription factors. EMBO J. 9: 605–613.

    PubMed  CAS  Google Scholar 

  • Sprague, G.F. (1939) Heritable characters in maize. Vestigial glume. J. Hered. 30: 143–145.

    Google Scholar 

  • Steffenson, D.M. (1968) A reconstruction of cell development in the shoot apex of maize Am. J. Bot. 55: 354–369.

    Article  Google Scholar 

  • Stewart, R. and Dermen, H. (1970) Determination of number and mitotic activity of shoot apical initial cells by analysis of mericlinal chimeras. Am. J. Bot. 57: 816–826.

    Article  Google Scholar 

  • Stinson, J.R., Eisenberg, A.J., Willing, R.P., Pe, M.E., Hanson, D.D. and Mascarenhas, J.P. (1987) Genes expressed in the male gametophyte of flowering plants and their isolation. Plant Physiol. 83: 442–447.

    Article  PubMed  CAS  Google Scholar 

  • Tran Thanh Van, K. (1973) Direct flower neoformation from superficial tissues of small explants of Nicotiana tabacum. Planta 115: 87–92.

    Article  Google Scholar 

  • Trull, M.C. and Malmberg, R.L. (1994) Puzzle-box, a tobacco line with flowers that mix floral and inflorescence characteristics. Am. J. Bot. (in press).

    Google Scholar 

  • Trull, M.C., Holaway, B.L. and Malmberg, R.L. (1992) Development of a tobacco line with stigmatoid-anthers - implications for regulation of stigma differentiation. Can. J. Bot. 70: 2339–2346.

    Article  Google Scholar 

  • Veit, B., Greene, B., Lowe, B., Mathern, J., Sinha, N., Vollbrecht, E. (1991) Genetic approaches to inflorescence and leaf development in maize. Development 112: 105–111.

    Google Scholar 

  • Wardlaw, C.W. (1957) The floral meristem as a reaction system. Proc. R. Soc. Edinburgh Sec. B (Bio.) 66: 394–408.

    Article  Google Scholar 

  • Weigel, D., Alvarez, J., Smyth, D.R., Yanofsky, M.F. and Meyerowitz, E.M. (1992) Leafy controls forai meristem identity in Arabidopsis. Cell 69: 843–859.

    Article  PubMed  CAS  Google Scholar 

  • Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldman, K.A. and Meyerowitz, E.M. (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346: 35–39.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Trull, M.C., Malmberg, R.L. (1994). Genetic control of floral development in selected species. In: Williams, E.G., Clarke, A.E., Knox, R.B. (eds) Genetic control of self-incompatibility and reproductive development in flowering plants. Advances in Cellular and Molecular Biology of Plants, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1669-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1669-7_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4340-5

  • Online ISBN: 978-94-017-1669-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics