Skip to main content

Part of the book series: Advances in Cellular and Molecular Biology of Plants ((CMBP,volume 2))

Abstract

The term ‘sex expression’ can have two quite different meanings in plants. On the one hand it can refer to male and female individuals and in this case it can be used only for dioecious species. If it is taken, however, in a broader sense, it can also apply to single flowers in monoecious plants or even to female or male sex organs in a hermaphroditic flower.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Akam, M. (1987) Molecular basis for metameric pattern in the Drosophila embryo. Development 101: 1–22.

    PubMed  CAS  Google Scholar 

  • Arroyo, M.T. and Raven, P.H. (1975) The evolution of subdioecy in morphologically gynodioecious species of Fuchsia sect. encliandra (Onagraceae). Evolution 29: 217–281.

    Article  Google Scholar 

  • Bawa, K.S. (1980) Evolution of dioecy in flowering plants. Annu. Rev. Ecol. Syst. 11: 15–39.

    Article  Google Scholar 

  • Bernier, G. (1988) The control of floral evocation and morphogenesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39: 175–219.

    Article  Google Scholar 

  • Bowman, J.L., Smith, D.R. and Meyerowitz, E.M. (1989) Genes directing flower development in Arabidopsis. The Plant Cell 1: 37–52.

    PubMed  CAS  Google Scholar 

  • Bowman, J.L., Drews, G.N. and Meyerowitz, E.M. (199la) Expression of the Arabidopsis floral homeotic gene Agamous is restricted to specific cell lines late in flower development. The Plant Cell 3: 749–758.

    CAS  Google Scholar 

  • Bowman, J.L., Sakai, H., Jack, T., Weigel, D., Mayer, U. and Meyerowitz, E.M. (1992) Superman, a regulator of floral homeotic genes in Arabidopsis. Development 114: 599–615.

    Google Scholar 

  • Bracale, M., Galli, M.G., Falavigna, A. and Soave, C. (1990) Sexual differentiation in Asparagus officinalis L. II. Total and newly synthesized proteins in male and female flowers. Sex. Plant Reprod. 3: 23–30.

    Article  Google Scholar 

  • Bracale, M., Caporali, E., Galli, M.G., Longo, C., Marziani-Longo, G., Rossi, G. et al. (1991) Sex determination and differentiation in Asparagus officinalis L. Plant Science, 80: 67–77.

    Article  CAS  Google Scholar 

  • Carpenter, R. and Coen, E.S. (1990) Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Genes Dev. 4: 1483–1493.

    Article  PubMed  CAS  Google Scholar 

  • Champault, A. (1969) Masculinisation d’inflorescences femelles de Mercurialis annua L. (2n=16) par culture in vitro de noeuds isolés en présence d’auxines. C.R. Acad. Sci. Paris Ser. D 280: 591–594.

    Google Scholar 

  • Champault, A. (1973) Effets de quelques régulateurs de croissance sur des noeuds isolés de Mercurialis annua L. (2n = 16) cultivés in vitro. Bull. Soc. Bot. Fr. 120: 87–100.

    CAS  Google Scholar 

  • Champault, A., Chung, S., Guérin, B., Kahlem, G., Lhermitte, A., Teller, G. and Durand, B. (1981) Towards an understanding of the mechanism of cytokinin activity in Mercurialis annua L. sex differentiation. In: J. Guern and C. Péaud-Lenoel (eds.), Metabolism and Molecular Activities of Cytokinins, pp. 129–139. Springer-Verlag, Heidelberg.

    Chapter  Google Scholar 

  • Champault, A., Guérin, B. and Teller, G. (1985) Cytokinin contents and specific characteristics of tissue strains from three sexual genotypes of Mercurialis annua. Evidence for sex-gene involvement at callus tissue level. Planta 166: 429–437.

    CAS  Google Scholar 

  • Charlesworth, B. and Charlesworth, D. (1978) A model for the evolution of dioecy and gynodioecy. Am. Nat. 112: 975–997.

    Article  Google Scholar 

  • Charnov, E.L., Smith, J.M. and Bull, I.J. (1976) Why be an hermaphrodite? Nature 263: 125–126.

    Article  Google Scholar 

  • Coen, E.S. (1991) The role of homeotic genes in flower development and evolution. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 241–279.

    Google Scholar 

  • Coen, E.S. and Meyerowitz, E.M. (1991) The war of whorls: genetic interactions controlling flower development. Nature 353: 31–37.

    Article  PubMed  CAS  Google Scholar 

  • Coen, E.S., Romero, J.M., Doyle, S., Elliott, R., Murphy, G. and Carpenter, R. (1990) Floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell 63: 1311–1322.

    Google Scholar 

  • Darwin, C. (1877) The Different Forms of Flowers on Plants of the Same Species, John Murray, London.

    Book  Google Scholar 

  • Dauphin-Guérin B., Teller, G. and Durand, B. (1980) Different endogenous cytokinins between male and female Mercurialis annua L. Planta 148: 124–129.

    Article  Google Scholar 

  • Delaigue, M., Poulain, T. and Durand, B. (1984) Phytohormone control of translatable mRNA populations in sexual organogenesis of the dioecious plant Mercurialis annua. Plant Mol. Biol. 3: 419–427.

    Article  CAS  Google Scholar 

  • Della Porta, S.L., Moreno, M.A. and Delong, A. (1991) Cell lineage analysis of the gynoecium of maize using the transposable element Ac. Development (Suppl. 1): 141–147.

    Google Scholar 

  • Drews, G.N., Bowmann, J.L. and Meyerowitz, E.M. (1991) Negative regulation of the Arabidopsis homeotic gene Agamous by the Apetala 2 product. Cell 65: 991–1002.

    Article  PubMed  CAS  Google Scholar 

  • Durand, B. (1967) L’expression du sexe chez les Mercuriales annuelles. Bull Soc. Fr. Physiol. Vég. 13: 195–202.

    Google Scholar 

  • Durand, B. (1969) Sélection de génotypes males de Mercurialis annua L. (2n = 16) en fonction de leur sensibilité aux cytokinines. C.R. Acad. Sci. Paris Ser. D. 268: 249–251.

    Google Scholar 

  • Durand, R. and Durand, B. (1990) Sexual determination and sexual differentiation. Crit. Rev. Plant Sci. 9: 295–316.

    Article  Google Scholar 

  • Franken, A.A. (1970) Sex characteristics and inheritance of sex in Asparagus officinalis L. Euphytica 19: 277–287.

    Article  Google Scholar 

  • Frankel, R. and Galun, E. (1977) Pollination Mechanisms, Reproduction and Plant Breeding, pp. 102–196. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Galli, M.G., Bracale, M., Falavigna, A. and Soave, C. (1988) Sexual differentiation in Asparagus officinalis L. I. DNA characterization and mRNA activities in male and female flowers. Sex. Plant Reprod. 1: 202–207.

    Article  Google Scholar 

  • Galli, M.G., Bracale, M., Falavigna, A., Raffaldi, F., Savini, C. and Vigo, A. (1993) Different kinds of male flowers in the dioecious plant Asparagus officinalis L. Sex. Plant Reprod. 6: 16–21.

    Article  Google Scholar 

  • Gibson, G. and Gehring, W.J. (1988) Head and thoracic transformations caused by ectopic expression of Antennapedia during Drosophila development. Development 102: 657–675.

    Google Scholar 

  • Goethe, J.W. (1790) Versuch die Metamorphose der Pflanzen zu erklaren. Ettinger, Gotha.

    Google Scholar 

  • Hamdi, S. (1988) Regulation of IAA-oxidase activities: correlation with sex genes, sterility determinants and IAA levels in Mercurialis annua L. Life Sci. Adv., (Plant Physiol.), 7: 105–112.

    Google Scholar 

  • Hamdi, S., Teller, G. and Louis, J.P. (1987) Master regulatory genes, auxin levels, and sexual organogenesis in the dioecious plant Mercurialis annua. Plant Physiol. 85: 393–399.

    Article  PubMed  CAS  Google Scholar 

  • Hamdi, S., Yu, L.-X., Cabre, E. and Delaigue, M. (1989) Gene expression in Mercurialis annua flowers: in vitro translation and sex genotype specificity. Male-specific cDNA cloning and hormonal dependence of a corresponding specific RNA. Mol. Gen. Genet. 219: 168–176.

    Article  CAS  Google Scholar 

  • Haughn, G.W. and Somerville, C.R. (1988) Genetic control of morphogenesis in Arabidopsis. Dev. Genet. 9: 73–89.

    Article  Google Scholar 

  • Heslop-Harrison, J. (1957) The experimental modification of sex expression in flowering plants. Biol. Rev. 32: 38–90.

    Google Scholar 

  • Irish, E.E. and Nelson, T. (1989) Sex determination in monoecious and dioecious plants. The Plant Cell 1: 737–744.

    PubMed  Google Scholar 

  • Jablonka, E. and Lamb, H.J. (1990) The evolution of the heteromorphic sex chromosomes. Biol. Rev. 65: 249–276.

    Article  PubMed  CAS  Google Scholar 

  • Kahlem, G. (1975) A specific and general biochemical marker of stamen morphogenesis in higher plants: anodic peroxidases. Z. Pflanzenphysiol. 76: 80–85.

    CAS  Google Scholar 

  • Kohn, J.R. (1988) Why be female? Nature 335: 431–433.

    Article  Google Scholar 

  • Kunst, L., Klenz, J.E., Martinez-Zapater, M. and Haughn, G.W. (1989) Ap gene determines the identity of perianth organs in flowers of Arabidopsis thaliana. The Plant Cell 1: 1195–1208.

    Google Scholar 

  • Lazarte, J.E. and Garrison, A. (1980) Sex modifications in Asparagus officinalis L. J. Am. Soc. Hort. Sci. 105: 691–694.

    CAS  Google Scholar 

  • Lazarte, J.E. and Palser, B.F. (1979) Morphology, vascular anatomy and embryology of pistillate and staminate flowers of Asparagus officinalis L. Am. J. Bot. 66: 753–764.

    Article  Google Scholar 

  • Lloyd, D.G. (1975) The maintenance of gynodioecy and androdioecy in angiosperms. Genetica 45: 325–339.

    Article  Google Scholar 

  • Loptien, D. (1979) Identification of the sex chromosome pair in asparagus (Asparagus officinalis L.). Zeitschr. für Pflanzenzüchtung 82: 162–173.

    Google Scholar 

  • Louis, J.-P. (1989) Genes for regulation of sex differentiation and male fertility in Mercurialis annua L. J. Hered. 80: 104–111.

    Google Scholar 

  • Louis, J.P. and Durand, B. (1978) Studies with the dioecious angiosperm Mercurialis annua L. (2n = 16): correlation between genic and cytoplasmic male sterility, sex segregation and feminizing hormones (cytokinins). Mol. Gen. Genet. 165: 309–322.

    Article  CAS  Google Scholar 

  • Louis, J.P., Augur, C. and Teller, G. (1990) Cytokinins and differentiation processes in Mercurialis annua. Genetic regulation, relations with auxins, indoleacetic acid oxidases and sexual expression patterns. Plant Physiol. 94: 1535–1541.

    Article  PubMed  CAS  Google Scholar 

  • Lyndon, R.F. (1985) Silene. In: H.A. Halevy (ed.), Handbook of Flowering, vol. IV, pp. 313–319. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Maestri, E., Restivo, F.M., Marziani Longo, G.P., Falavigna, A. and Tassi, F. (1991) Isozyme gene markers in the dioecious species Asparagus officinalis L. Theor. Appl. Genet. 81: 613–618.

    Article  CAS  Google Scholar 

  • Marks, M. (1973) A reconsideration of the genetic mechanism for sex determination in Asparagus officinalis. In: Proc. Eucarpia Meeting on Asparagus, pp. 122–128. Versailles, France.

    Google Scholar 

  • Marziani Longo, G.P., Rossi, G., Scaglione, G., Longo, C.P. and Soave, C. (1990) Sexual differentiation in Asparagus officinalis L. III. Hormonal content and peroxidase isoenzymes in female and male plants. Sex. Plant Reprod. 3: 236–243.

    Google Scholar 

  • Mayer, S.S. and Charlesworth, D. (1991) Cryptic dioecy in flowering plants. TREE 6: 320–325.

    PubMed  CAS  Google Scholar 

  • Melzer, S., Majewski, D.M. and Apel, K. (1990) Early changes in gene expression during the transition from vegetative to generative growth in the long-day plant Sinapis alba. The Plant Cell 2: 953–961.

    PubMed  CAS  Google Scholar 

  • Meyerowitz, E.M., Bowman, J.L., Brockman, L.L., Drews, G.N., Jack, T., Sieburth, L.E. and Weigel, D. (1991) A genetic and molecular model for flower development in Arabidopsis. Development (Suppl. 1 ): 157–167.

    CAS  Google Scholar 

  • Mitchell, M.J., Woods, D.R., Tucker, P.K., Opp, J.S., and Bishop, C. (1991) Homology of a candidate spermatogenic gene from the mouse Y chromosome to the ubiquitin activating enzyme El. Nature 354: 483–489.

    Article  PubMed  CAS  Google Scholar 

  • Opler, P.A. and Bawa, K.S. (1978) Sex ratios of tropical forest trees. Evolution 32: 812–821.

    Article  Google Scholar 

  • Peirce, L.C. and Currence, T.M. (1962) The inheritance of hermaphroditism in Asparagus officinalis. Proc. Am. Soc. Hort. Sci. 80: 368–376.

    Google Scholar 

  • Rick, L.M. and Hanna, G.L. (1943) Determination of sex in Asparagus officinalis. Am. J. Bot. 30: 711–714.

    Article  Google Scholar 

  • Ross, M.D. (1978) The evolution of gynodioecy and subdioecy. Evolution 32: 174–188.

    Article  Google Scholar 

  • Schink, M. and Mechelke, F. (1989) Sex-correlated differences in the protein pattern of Viscum album L. revealed by two-dimensional gel electrophoresis. Naturwissenschaften 76: 29–30.

    Article  CAS  Google Scholar 

  • Schultz, E.A. and Haughn, G.W. (1991) Leafy, a homeotic gene that regulates inflorescence development in Arabidopsis. The Plant Cell 3: 771–781.

    Google Scholar 

  • Schwarz-Sommer, Z., Huijser, P., Nacken, W., Saedler, H. and Sommer, H. (1990) Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250: 931–936.

    Article  PubMed  CAS  Google Scholar 

  • Sommer, H., Beltran, J.-P., Huijser, P., Pape, H., Loennig, W.E., Saedler, H. and Schwarz-Sommer, Z. (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9: 605–613.

    PubMed  CAS  Google Scholar 

  • Sommer, H., Nacken, W., Beltran, P., Huijser, P., Pape, H., Hansen, R. et al. (1991) Properties of Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus. Development (Suppl. 1 ): 169–175.

    Google Scholar 

  • Westergaard, M. (1958) The mechanism of sex determination in dioecious flowering plants. Adv. Genet. 9: 217–281.

    Article  PubMed  CAS  Google Scholar 

  • White, J.A. (1984) Plant metamerism. In: R. Dirzo and J. Sarukhan (eds.), Perspectives in Plant Population Ecology, pp. 15–47. Sinauer Associates Inc., Sunderland, MA.

    Google Scholar 

  • Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldmann, K.A. and Meyerowitz, E.M. (1990) The protein encoded by the Arabidopsis homeotic gene Agamous resembles transcription factors. Nature 346: 35–39.

    Article  PubMed  CAS  Google Scholar 

  • Ye, D., Installè, P., Ciuperscu, D., Veuskens, J., Wu, J., Salesses, G. et al. (1990) Sex determination in the dioecious Melandrium. I. First lesson from androgenic haploids. Sex. Plant Reprod. 3: 179–186.

    Article  Google Scholar 

  • Ye, D., Oliveira, M., Veuskens, J., Wu, Y., Installé, P., Hinnisdaels, S. et al. (1991) Sex determination in the dioecious Melandrium. the X/Y chromosome system allows complementary cloning strategies. Plant Sci. 80: 93–106.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Longo, C.P. (1994). Genes controlling sex expression. In: Williams, E.G., Clarke, A.E., Knox, R.B. (eds) Genetic control of self-incompatibility and reproductive development in flowering plants. Advances in Cellular and Molecular Biology of Plants, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1669-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1669-7_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4340-5

  • Online ISBN: 978-94-017-1669-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics