Microcarriers for Animal Cell Culture

  • Elena Markvicheva
  • Christian Grandfils
Part of the Focus on Biotechnology book series (FOBI, volume 8A)

Abstract

Due to a great recent progress in animal cell biotechnology in particular in gene engineering, large-scale production of important biological materials, such as viral vaccines, viral vectors, as well as various cell products has become an industrial reality. The list of these products includes recombinant proteins and peptides, lymphokines and cytokines, enzymes, monoclonal antibodies, hormones, growth factors (e.g. platelet-derived growth factor (PDFG), epithelial growth factor (EGF), colony-stimulating factor (CSF), tissue plasminogen activator, serum proteins (e.g. factor VIII, factor IX), tumour necrosis factor (TNF), erythropoietin (EPO), nucleic acids etc. Some of these products are available on the market as human and animal diagnostics and therapeutics. Many others are currently undergoing evaluation in a developmental process or in clinical trials.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Nishijima, K.; Fujiki, T.; Kojima, H. and lijima, S. (2000) The effects of cell adhesion on the growth and protein productivity of animal cells. Cytotechnology 33 (1–3): 147–155.CrossRefGoogle Scholar
  2. [2]
    Hulleman, E.; Bijvelt, J.J.M.; Verkleij; A.J.; Verrips, C.T. and Boonstra J. (1999) Integrin signalling at the M/G1 transition induces expression of cyclin E. Exp. Cell Res. 253 (2): 422–431.Google Scholar
  3. [3]
    Hu, W.S. and Aunins, J.G. (1997) Large-scale mammalian cell culture. Cuir. Opin. Biotechnol. 8: 148–153.CrossRefGoogle Scholar
  4. [4]
    Papoutsakis, E.T. (1991) Fluid-mechanical damage of animal cells in bioreactors. Trends Biotechnol. 9 (12): 427–437.CrossRefGoogle Scholar
  5. [5]
    Reuveny, S. (1990) Microcarrier culture systems. Bioprocess Technol. 10: 271–341.Google Scholar
  6. [6]
    van Der Velden-De Groot, C.A.M. (1995) Microcarrier technology, present status and perspective. Cytotechnology 18 (1/2): 51–56.CrossRefGoogle Scholar
  7. [7]
    van Wezel, A.L. (1967) Growth of cell-strains and primary cells on microcarriers in homogeneous culture. Nature 216: 64–65.CrossRefGoogle Scholar
  8. [8]
    van Wezel, A.L. and van der Velden-de Groot, C A. (1978) Large scale cultivation of animal cells in microcarrier culture. Process Biochem. 13: 6–8.Google Scholar
  9. [9]
    van Hemert, P.; Kilburn, D.G. and van Wezel, A.L. (1969) Homogeneous cultivation of animal cells for the production of virus and virus products. Biotechnol. Bioeng. 11: 875–885.CrossRefGoogle Scholar
  10. [10]
    Levine, D.W. (1979) Production of anchorage-dependent cells on microcarriers. PhD thesis, MIT, Cambridge.Google Scholar
  11. [11]
    Levine, D.W.; Wong, J.S.; Wang D.I.C. and Thilly W.G. (1977) Microcarrier cell culture: New methods for research scale application. Somatic Cell Genet. 3: 149–155.CrossRefGoogle Scholar
  12. [12]
    Levine, D.W.; Thilly, W.G. and Wang, D.I.C. (1979) Parameters affecting cell growth on reduced charge microcarriers. Dev. Biol. Standard 42: 159–164.Google Scholar
  13. [13]
    Levine, D.W.; Wang, D.I.C. and Thilly, W.G. (1979) Optimization of growth surface parameters in microcarrier cell culture. Biotechnol. Bioeng. 21: 821–845.CrossRefGoogle Scholar
  14. [14]
    Lundgren, B. and Bluml, G. (1998) Microcarriers in cell culture production. In: Subramanian, G (Ed) Bioseparation and Bioprocessing. “Wiley-VCH Verlag GmbH, Weinheim, Germany”; Vol 2; pp 165–222.Google Scholar
  15. [15]
    Norde, W. and Lyklema J. (1991) Why proteins prefer interfaces. J. Biomater. Sci. Polymer Edn. 2: 183–202.CrossRefGoogle Scholar
  16. [16]
    Bancel, S. and Hu, W-Sh. (1996) Confocal laser scanning microscopy examination of cell distribution in macroporous microcarriers. Biotechnol. Prog. 12 (3): 398–402.CrossRefGoogle Scholar
  17. [17]
    Bohak, Z.; Kadouri, A.; Sussman, M.V. and Feldman, A.F. (1987) Novel anchorage matrices for suspension culture of mammalian cells. Biopolymer 26: 205–213.CrossRefGoogle Scholar
  18. [18]
    Lazar, A.; Reuveny, S.; Geva, J.; Marcus, D.; Silberstein, L.; Ariel, N.; Epstein, N.; Altbaum, Z.; Sinai, J. and Mizrahi; A. (1987) Production of carcinoembryonic antigen from a human colon adenocarcinoma cell line. I. Large-scale cultivation of carcinoembryonic antigen-producing cells on cylindric cellulose-based microcarriers. Dev. Biol. Standard. 66: 423–428.Google Scholar
  19. [19]
    Nilsson, K.; Birnbaum, S. and Mosbach, K. (1987) Growth of anchorage-dependent cells on macroporous microcarriers. In: Spier R. and Griffiths J.B. (Eds) Modern Approaches to Animal Technology. Butterworths; pp 492–503Google Scholar
  20. [20]
    Hillegas, W. J.; Solomon, D.E. and Wuttke, G.H. (2001) Microcarrier beads having a styrene copolymer core and a covalently linked tri-methylamine exterior. Solohill Engineering, Inc. Assignee; US Patent, 6,214,618, April 10.Google Scholar
  21. [21]
    Dixit, V.; Piskin, E.; Arthur, M.; Denizli, A.; Tuncel, S.A.; Denkbas, E. and Gitnick, G. (1992) Hepatocyte immobilization on PHEMA microcarriers and its biologically modified forms. Cell Transplantation 1 (6): 391–399.Google Scholar
  22. [22]
    Kiremitci, M. and Piskin, E. (1990) Cell adhesion to the surfaces of polymeric beads. Biomaterials, Artificial cells, and Artificial organs 18 (5): 599–603.Google Scholar
  23. [23]
    Haselton, F.R.; Dworska, E.; Evans, S.S.; Hoffman, L.H. and Alexander, J.S. (1996) Modulation of retinal endothelial barrier in an in vitro model of the retinal microvasculature. Exp. Eye Res. 63 (2): 211–222.CrossRefGoogle Scholar
  24. [24]
    Yagi, K.; Michibayashi, N.; Kurikawa, N.; Nakashima, Y.; Mizoguchi, T.; Harada, A.; Higashiyama, S.; Muranaka, H. and Kawase, M. (1997) Effectiveness of fructose-modified chitosan as a scaffold for hepatocyte attachment. Biological, and Pharmaceutical Bulletin 20 (12): 1290–1294.CrossRefGoogle Scholar
  25. [25]
    Pereira, M.A.; Alves, M.M.; Azeredo, J.; Mota, M. and Oliveira, R. (2000) Influence of physicochemical properties of porous microcarriers on the adhesion of an anaerobic consortium. Journal of Industrial Microbiology, and Biotechnology 24 (3): 181–186.CrossRefGoogle Scholar
  26. [26]
    Qiu, Q-Q.; Ducheyne, P. and Ayyaswamy, P.S. (1998) Growth and differentiation of osteoblasts on hollow biocompatible ceramic microcarriers under microgravity conditions. 362 (Advances in Heat and Mass Transfer in Biotechnology): 49–53Google Scholar
  27. [27]
    Xu, A.S.L. and Reid, L.M. (2001) Soft, porous poly(D,L-lactide-co-glycotide) microcarriers designed for ex vivo studies and for transplantation of adherent cell types including progenitors. Annals of the New York Academy of Sciences 944 (Bioartificial Organs III): 144–159.CrossRefGoogle Scholar
  28. [28]
    Von Recum, H.; Kikuchi, A.; Yamato, M.; Sakurai, Y.; Okano, T. and Kim, S.W. (1999) Growth factor and matrix molecules preserve cell function on thermally responsive culture surfaces. Tissue Engineering 5 (3): 251–265.CrossRefGoogle Scholar
  29. [29]
    Ishihara, K.; Ishikawa, E.; Iwasaki, Y. and Nakabayashi, N.J. (1999) Inhibition of fibroblast cell adhesion on substrate by coating with 2–methacryloyloxyethyl phosphorylcholine polymers. Biomater. Sci. Polymer Ed. 10: 1047–1061.Google Scholar
  30. [30]
    Cox, E.A. and Huttenlocher, A. (1998) Regulation of integrin-mediated adhesion during cell migration. Microscopy Research and Technique 43: 412–419.CrossRefGoogle Scholar
  31. [31]
    Horbett, T. (1982) Plasma adsorption on biomaterials. In: Cooper S.L and Peppas, N.A (Eds) Biomaterials: Interfacial Phenomena and Applications. Washington, DC; ACS; pp 233–244.CrossRefGoogle Scholar
  32. [32]
    Lee, J.; Martic, P.A. and Tan, J.S. (1989) Protein adsorption on pluronic copolymer-coated polystyrene particles. J. Coll. Interf. Sci. 131: 252–266.CrossRefGoogle Scholar
  33. [33]
    lshihara, K.; Aragaki, R.; Ueda, T.; Watanabe, A. and Nakabayashi, N. (1990) Reduced thrombogenicity of polymers having phospholipid polar groups. J. Biomed. Mat. Res. 20: 1069–1077.Google Scholar
  34. [34]
    Marchal, Th.G.; Verfaillie, G.; Legras, R.; Trouet, A.B. and Rouxhet, P.G. (1998) Heterogeneous polymer surfaces used as biomaterials: protein adsorption and cell adhesion 63 (4a): 1109–1116.Google Scholar
  35. [35]
    Williams, R. L.; Hunt, J. A. and Tengvall, P. (1995) Fibroblast adhesion onto methyl-silica gradients with and without preadsorbed protein. J. Biomed. Mater. Res. 29 (12): 1545–1555.CrossRefGoogle Scholar
  36. [36]
    Tamada, Y. and Ikada, Y. (1993) Effect of preadsorbed proteins on cell adhesion to polymer surfaces. J. Colloid Interface Sci. 155 (2): 334–339.CrossRefGoogle Scholar
  37. [37]
    Dewez, JL.; Doren, A.; Schneider, Y.J. and Rouxhet, P.G. (1999) Competitive adsorption of proteins: key of the relationship between substratum surface properties and adhesion of epithelial cells. Biomaterials 20 (6): 547–559.CrossRefGoogle Scholar
  38. [38]
    Ruoslahti, E. and Pierschbacher, M.D. (1987) New perspectives in cell adhesion: RGD and integrins. Sciences 238 (4826): 491–497.CrossRefGoogle Scholar
  39. [39]
    Elgerstma, A.V.; Zsom, R.I.J.; Norde, W. and Lyklema, J. (1991) The Adsorption of Different Types of Monoclonal Immunoglobulin on Positively and Negatively Charged Polystyrene Lattices. Colloid Surface 54: 89–101.CrossRefGoogle Scholar
  40. [40]
    Norman, M.E.; Williams, P. and Ilium, L. (1993) In vivo evaluation of protein adsorption to sterically stabilized colloidal carriers. J. Biomed. Mat. Res. 27: 861–866.CrossRefGoogle Scholar
  41. [41]
    Pizzoferrato, A.; Arcioal, C.R.; Cenni,E.; Ciapetti, G. and Sassi, S. (1995) In vitro biocompatibility of a polyurethane catheter after deposition of fluorinated film. Biomaterials 16: 361–367.Google Scholar
  42. [42]
    Garcia, A.J.; Vega, M.D. and Boettiger, D. (1999) Modulation of cell proliferation and differentiation through substrate-dependent changes in fibronectin conformation. Molecular Biology of the Cell 10: 785798.Google Scholar
  43. [43]
    Berman, A.; Morozevich, G.; Karmansky, 1.; Gleiberman, A. and Bychlova, V. (1993) Adhesion of mouse hepatocytes to type 1 Collagen, Role of supramolecular forms and effect of proteolytic degradation. Biochemical and Biophysical Research Communications 194: 351–357.Google Scholar
  44. [44]
    Grinnell, F.; Nakagawa, S. and Ho, C.H. (1989) The collagen recognition sequence for fibroblasts depends on collagen topography. Dep. Cell Biol. Anat., Exp. Cell Res 182 (2): 668–672.CrossRefGoogle Scholar
  45. [45]
    Senoo, H.; 1mai, K.; Matano, Y. and Sato, M. (1998) Parenchymal and Mesenchymal Cell Interaction in the Liver. Journal of Gastroenterology and Hepatology 13 (Suppl.): S19–S32.Google Scholar
  46. [46]
    Griffiths, L. G (2000) Polymeric biomaterials. Acta Materialia 48 (1): 263–277.CrossRefGoogle Scholar
  47. [47]
    Roeder, B.A.; Kokini, K.; Sturgis, J.E.; Robinson, J.P. and Voytik-Harbin, S.L. (2002) Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. Journal of Biomechanical Engineering 124 (2): 214–222.CrossRefGoogle Scholar
  48. [48]
    Curtis, A. and Wilkinson, C. (2001) Nanotechniques and approaches in biotechnology. Trends in Biotechnology 19 (3): 97–101.CrossRefGoogle Scholar
  49. [49]
    Detrait, E.; Lhoest, J.-B.; Knoops, B.; Bertrand, P. and van den Bosch de Aguilar, Ph. (1998) Orientation of cell adhesion and growth on patterned heterogeneous polystyrene surface. Journal of Neuroscience Methods 84 (1–2): 193–204.CrossRefGoogle Scholar
  50. [50]
    Clark, P.; Connolly, P. and Moores, G.R. (1992) Cell guidance by micropatterned adhesiveness in vitro. Journal of Cell Science 103 (Pt 1): 287–292.Google Scholar
  51. [51]
    van Wezel A.L. (1973) Microcarrier culture of animal cells. In: Kruse P.E. and Patterson M.K. (Eds) Tissue Culture: Methods and Applications. Academic Press, New York; pp 372–377Google Scholar
  52. [52]
    Maroudas, N.G. (1977) Sulfonated polystyrene as an optimal substratum for the adhesion and spreading of mesenchymal cells in monovalent and divalent saline solution. J. Cellular Physiology 90 (3): 511–520.CrossRefGoogle Scholar
  53. [53]
    Reuveny, S. (1983) Research and development of animal cell microcarrier cultures. PhD. thesis, The Hebrew University Jerusalem.Google Scholar
  54. [54]
    Davies, J.E. (1998) The importance and measurement of surface charge species in cell behavior at the biomaterial interface. In: Ratner, B.D. (Ed) Surface characterisation of biomaterials,. Elsevier, Amsterdam.; pp 219–234Google Scholar
  55. [55]
    Sheltoon, R.M.; Rasmussen, A.C. and Davies J.E. (1988) Protein adsorption at the interface between charged polymer substrata and migrating osteoblasts. Biomaterials 9: 219–234.CrossRefGoogle Scholar
  56. [56]
    Varani, J.; Bendelow, M.J.; Chun, J.H. and. Hillegas, W.A. (1986) Cell growth on microcarriers. Comparison of proliferation on and recovery from various substrates. J. Biol. Standard 14: 331–336.Google Scholar
  57. [57]
    Varani, J.; Dame, M.; Beads, T.F. and Wass, J.A. (1983) Growth of three established cell lines on glass microcarriers. Biotechnol. Bioeng. 25: 1359–1372.CrossRefGoogle Scholar
  58. [58]
    Sammons, R.L.; Sharpe, J. and Marquis, P.M. (1994) Use of enhanced chemiluminescence to quantify protein adsorption to calcium phosphate materials and microcarrier beads. Biomaterials 15 (10): 542–527.CrossRefGoogle Scholar
  59. [59]
    Wolff, C. and Lai, C.S. (1989) Fluorescence energy transfer detects changes in fibronectin structure upon surface binding. Archives of Biochemistry and Biophysics 268 (2): 536–545.CrossRefGoogle Scholar
  60. [60]
    Wang, Y.-C.; Kuo, C.-H., and Hsieh, H-J. (2001) Enhancement of cell growth on microcarriers immobilized with insulin. Journal of the Chinese Institute of Chemical Engineers 32 (2): 125–133.Google Scholar
  61. [61]
    Yagi, K.; Michibayashi, N.; Kurikawa, N.; Nakashima, Y.; Mizoguchi, T.; Harada, A.; Higashiyama, S.; Muranaka, H. and Kawase, M. (1997) Effectiveness of fructose-modified chitosan as a scaffold for hepatocyte attachment. Biol. Pharm. Bull. 20 (12): 1290–1294.CrossRefGoogle Scholar
  62. [62]
    Varani, J.; Fligiel, S.E.; Inman D.R.; Beals, T. F. and Hillegas, W.J. (1995) Modulation of adhesive properties of DEAE-dextran with laminin. Journal of Biomedical Materials Research 29 (8): 993–997.CrossRefGoogle Scholar
  63. [63]
    Varani, J.; Inman, D.R.; Fligiel, S.E. and Hillegas, W.J. (1993) Use of recombinant and synthetic peptides as attachment factors for cells on microcarriers. Cytotechnology 13 (2): 89–98.CrossRefGoogle Scholar
  64. [64]
    Budak, V.; Herak-Perkovic, V. and Weber, M. (2000) Cultivation of MPK (minipig kidney) cells on cytodex microcarriers. Current Studies of Biotechnology 1 (Biomedicine): 89–92.Google Scholar
  65. [65]
    Lira, R; Rosales-Encina, J.L. and Arguello, C. (1997) Leishmania mexicana: binding of promastigotes to type 1 collagen. Experimental parasitology 85 (2): 149–157.CrossRefGoogle Scholar
  66. [66]
    Roder, B.; Zuhlke, A.; Widdecke, H. and Klein J. (1993) Synthesis and application of new microcarriers for animal cell culture. Part II: Application of polystyrene microcarriers. Journal of Biomaterials Science, Polymer Edition 5 (1–2): 79–88.Google Scholar
  67. [67]
    Oturan, N.; Serne, H.; Reach, G. and Jozefowicz, M. (1993) RINm5F cell culture on Sephadex derivatives. Journal of Biomedical Materials Research 27 (6): 705–715.CrossRefGoogle Scholar
  68. [68]
    Ito, Y. and Imanishi, Y. (1994) A biomaterial as a strong biosignal. Polym News 19 (7): 198–202.Google Scholar
  69. [69]
    Denizli, A.; Piskin, E.; Dixit, V.; Arthur, M. and Gitnick, G. (1995) Collagen and fibronectin immobilization on PHEMA microcarriers for hepatocyte attachment. International journal of Artificial Organs 18 (2): 90–95.Google Scholar
  70. [70]
    Williams, D. (2002) Reassessing Bioactive Surfaces. Medical Device Technology 13: 8–9.Google Scholar
  71. [71]
    Griffiths, B. (2001) Scale-up of suspension and anchorage-dependent animal cells. Molecular Biotechnology 17 (3): 225–238.CrossRefGoogle Scholar
  72. [72]
    Kawada, M.; Nagamori, S.; Aizaki, H.; Fukaya, K.; Niiya, M.; Matsuura, T.; Sujino, H.; Hasumura, S.; Yashida, H.; Mizutani, S. and Ikenaga, H. (1998) Massive culture of human liver cancer cells in a newly developed radial flow bioreactor system: ultrafine structure of functionally enhanced hepatocarcinoma cell lines. In Vitro Cell. Dev. Biol.: Animal 34 (2): 109–115.Google Scholar
  73. [73]
    Molnar, G.; Schroedl, N.A.; Gonda, S.R. and Hartzell, C.R. (1997) Skeletal muscle satellite cells cultured in simulated microgravity. In Vitro Cellular and Developmental Biology: Animal 33 (5): 386–391.Google Scholar
  74. [74]
    Chisti, Y. (2001) Hydrodynamic damage to animal cells. Critical Reviews in Biotechnology 21 (2): 67110.CrossRefGoogle Scholar
  75. [75]
    Frondoza, C.; Sohrabi, A. and Hungerford, D. (1996) Human chondrocytes proliferate and produce matrix components in microcarrier suspension culture. Biomaterials 17 (9): 879–888.CrossRefGoogle Scholar
  76. [76]
    Hodder, P.S. and Ruzicka, J. (1999) A flow injection renewable surface technique for cell-based drug discovery functional assays. Analytical Chemistry 71 (6): 1160–1166.CrossRefGoogle Scholar
  77. [77]
    Stephens, R. W.; Orning, L.; Stormorken, H.; Hamers, M.J.; Petersen, L.B. and Sakariassen, K.S (1996) Characterisation of cell-surface procoagulant activities using a microcarrier model. Thrombosis Research 84 (6): 453–461.CrossRefGoogle Scholar
  78. [78]
    Bramham, J.; Carter, A.N. and Riddell, F.G. (1996) The uptake of Li+ into human 1321 NI astrocytomas using 7Li NMR spectroscopy. Journal of Inorganic Biochemistry 61 (4): 273–84.CrossRefGoogle Scholar
  79. [79]
    Pavlovski, R.; Krajcik, R.; Loyd, R. and Przybyllski, R. (1979) Skeletal muscle development in culture on beaded microcarriers Cytodex 1. J. Cell Biol 115 A: 112–117.Google Scholar
  80. [80]
    Smith, M.A. and Vale, W.W. (1980) Superfusion of rat anterior pituitary cells attached to Cytodex beads: validation of a technique. Endocrinology 107: 1425–1431.CrossRefGoogle Scholar
  81. [81]
    Smith, M.A. and Vale, W.W. (1981) Desentization to gonadotropin-releasing hormone observed in superfused pituitary cells on Cytodex beads. Endocrinology 108: 752–759.CrossRefGoogle Scholar
  82. [82]
    Vosbeck, K. and Roth, S. (1976) Assay of intracellular adhesiveness using cell-coated Sephadex beads as collecting particles. J. Cell Sci 22: 657–670.Google Scholar
  83. [83]
    Malakhov, S.F.; Paramonov, B.A.; Emeli.anov, A.V. and Terskikh, V.V. (1997) New approaches to the treatment of severe bums: the transplantation of keratinicytes grown in culture. Voenno-Meditsinskii zhurnal 318 (9): 16–23.Google Scholar
  84. [84]
    Del Guerra, S.; Bracci, C.; Nilsson, K.; Belcourt, A.; Kessier, L.; Lupi, R.; Marselli, L.; De Vos P. and Marchetti, P. (2001) Entrapment of dispersed pancreatic islet cells in CultiSpher-S macroporous gelatin microcarriers: preparation, in vitro characterisation and microencapsulation, Biotechnology and Bioengineering 76 (6): 741–744.Google Scholar
  85. [85]
    Li, R.H.; Scott, W.; White, M. and Rein, D. (1999) Dose control with cell lines used for encapsulated cell therapy. Tissue Engineering 5 (5): 453–465.CrossRefGoogle Scholar
  86. [86]
    Schugens, C.; Grandfils, C; Jérôme, R.; Teyssié, Ph.; Delree, P.; Martin, D.; Malgrange, B. and Moonen; G. (1995) Preparation of a macroporous biodegradable polylactide implant for neuronal transplantation. J. Biomed. Mat. Res. 29: 1349–1362.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Elena Markvicheva
    • 1
  • Christian Grandfils
    • 2
  1. 1.Shemyakin&Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Centre Interfacultaire des Biomatériaux (CEIB)University of LiègeLiège (Sart-Tilman)Belgium

Personalised recommendations