Skip to main content

Genetic implications for forest trees of increasing levels of greenhouse gases and UV-B radiation

  • Chapter
Forest Genetics and Sustainability

Part of the book series: Forestry Sciences ((FOSC,volume 63))

Abstract

Globally, the environment is changing and deteriorating as greenhouse gases such as carbon dioxide (CO2) and tropospheric ozone (O3) continue to increase at a rate of about 1% per year (Keeling et al. 1995, Chameides et al. 1995). The increase in these gases is directly related to anthropogenic activities (Chameides et al. 1995, Mooney et al. 1991) and is likely inducing subtle but substantial changes in the earth’s surface temperatures and weather (Cha 1997; Martin 1996). In addition, anthropogenic activities have been linked to decreasing levels of stratospheric 03 and concomitant increases in ultraviolet-B radiation (UV-B) passing through to the earth’s surface. Thus, man is creating a constantly changing global environment for which tree breeders must attempt to develop genotypes and races suitable for future forests. The purpose of this paper is to examine the genetic implications for forest trees of increasing greenhouse gases and UV-B and to suggest where tree breeders need to be concerned about the changing environment. Since very little is known about the impact of greenhouse gases and/or UV-B on genetic population structure, we will not discuss population structure or the effects of selection on population structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  • Ayres, P.G., T.S. Gunasekera, M.S. Rasanayagam and N.D. Paul. 1996. Effects of UV-B radiation (280–320 nm) on foliar saprotrophs and pathogens. In J.C. Frankland, N Mangan and G.M. Gadd (eds.): Fungi and Environmental Change. Cambridge University Press, Cambridge. 32–50.

    Chapter  Google Scholar 

  • Badiani, M., A.R. Paolacci, A. D’Annibale, F. Miglietta and A. Raschi. 1997. Can rising CO2 alleviate oxidative risk for the plant cell? Testing the hypothesis under natural CO2 environment. In A. Raschi, F. Miglietta, R. Tognetti, and P.R. van Gandingen (eds.): Plant responses to elevated CO 2 : Evidence from natural springs. Cambridge University Press. United Kingdom 221–241.

    Chapter  Google Scholar 

  • Barbo, D.N., A.H. Chappelka, G.L. Somers, M.S. Miller-Goodman and K. Stolte. 1998. Diversity of an early successional plant community as influenced by ozone. New Phytol. 138: 653–662.

    Article  CAS  Google Scholar 

  • Bamola, J.M., M. Anklin J. Porheron, D. Raynaud, J. Schwander and B.T.I. Stauffer. 1995. CO2 evolution during the last millennium as recorded by Antarctic and Greenland ice. Tellus B 47: 264–272.

    Google Scholar 

  • Ba7.7a7, F A and K.D.M. McConnaughay. 1992. Plant-plant interactions in elevated CO2 environments. Aust. J. Bot. 40: 547–563.

    Article  Google Scholar 

  • Benoit, L.F., J.M. Skelly, L.D. Moore and L.S. Dochinger_ 1983. The influence of ozone on Pinus strobus L. pollen germination. Can. J. For. Res. 13: 184–187.

    Article  CAS  Google Scholar 

  • Berrang, P.C., D.F. Karnosky and J.P. Bennett. 1989. Natural selection for ozone tolerance in Populus tremuloides II. Field verification. Can. J. For. Res. 19: 519–522.

    Article  CAS  Google Scholar 

  • Berrang, P.C., D.F. Kamosky and J.P. Bennett. 1991. Natural selection for ozone tolerance in Populus tremuloides: an evaluation of nationwide trends. Can. J. For. Res. 21: 1091–1097.

    Article  Google Scholar 

  • Berrang, P.C., D.F. Kamosky, R.A. Mickler and J.P. Bennett. 1986. Natural selection for ozone tolerance in Populus tremuloides. Can. J. For. Res. 16: 1214–1216.

    Article  CAS  Google Scholar 

  • Binder, W.D. and S. J. L’Hirondelle. 19%. Ultraviolet radiation effects on some British Columbia conifers: 1. Engelmann spruce from five elevations. Abstract IUFRO Meeting for Population, Ecological and Conservation Genetics, University of British Columbia, Vancouver, August 5–9, 1996.

    Google Scholar 

  • Bornmann, J F and A.H. Teramura. 1993. Effects of ultraviolet-B radiation on terrestrial plants. In Young, A.R., Bjorn, L.O., Moan, J. And W. Nultsch (eds.): Environmental UV Photobiology. Plenum Press, New York. 427–471

    Google Scholar 

  • Bornmann, J.F. and T.C. Vogelmann. 1988. Penetration of blue and UV radiation measured by fiber optics in spruce and fir needles. Physiol. Plant. 72: 699–705.

    Article  Google Scholar 

  • Ceulemans, R. and M Mosseau. 1994. Effects of elevated atmospheric CO2 on woody plants: a review. New Phytol. 127: 425–446.

    Article  Google Scholar 

  • Cha, G. 1997. The impacts of climate change on potential natural vegetation distribution. J. For. Res. 2: 147–152.

    Article  Google Scholar 

  • Chameides, W.L., P.S. Kasibhatla, J. Yienger and FL Levy H. 1995. Growth of continental-scale metro-agro-plexes, regional ozone pollution, and world food production_ Science 264: 74–77.

    Article  Google Scholar 

  • Chappelka, A.H. and L. J. Samuelson. 1998. Ambient ozone effects on forest trees of the eastern United States: A Review. New Phytol. 139: 91–108.

    Article  CAS  Google Scholar 

  • Day, T.A., Martin, G. and T.C. Vogelmann. 1993. Penetration of UV-B radiation in foliage: evidence that the epidermis behaves as a non-uniform filter. Plant, Cell and Environ. 16: 735–741.

    Article  Google Scholar 

  • Day, T.A., T.C. Vogelmann and E.H. DeLucia. 1992. Are some plant life forms more effective than others in screening out ultraviolet-B radiation? Oceol. 92: 513–519.

    Article  Google Scholar 

  • DeLucia, E.H. and R.B. Thomas. 1995. Homeostatic adjustment of loblolly pine to CO2 enrichment in a forest ecosystem. In J. Elwood (ed.): DOE Program for Ecosystem Research: Research Summaries 11–12.

    Google Scholar 

  • DeLucia, E.H., T.A. Day and T.C. Vogelmann. 1992. Ultraviolet-B and visible light penetration into needles of two species of subalpine conifers during foliar development. Plant, Cell and Environ. 15: 921–929.

    Article  Google Scholar 

  • Dochinger, L.S. and C.E. Seliskar. 1970. Air pollution and the chlorotic dwarf disease of eastern white pine. For. Sei. 16: 46–55.

    Google Scholar 

  • Eamus, D. and P.G. Jarvis. 1989. The direct effects of increase in the global atmospheric CO2 concentration on natural and commercial temperate forests. Advances in Ecol. Res. 19: 155.

    Google Scholar 

  • Ellsworth, D.S., R Oren, C. Huang, N. Phillips, and G.R. Hendrey. 1995. Leaf and canopy responses to elevated CO2 in a pine forest under free-air CO2 enrichment. Oecologia 104: 139–146.

    Article  Google Scholar 

  • Feder, W.A. and R. Shrier. 1990. Combination of UV-B and ozone reduced pollen tube growth more than either stress alone. Environ. p. Bot. 30: 451–454.

    Article  CAS  Google Scholar 

  • Finlayson-Pitts, B.J. and J.N. Pitts, Jr. 1997. Tropospheric air pollution: Ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particulates. Science 276: 1045–1051.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, D.C., K.E. Percy and R.T. Riding. 1998a. Effects of UV-B radiation on epicuticular wax production and chemical composition of four Picea species. New Phytol. 138: 441449.

    Google Scholar 

  • Gordon, D.C., KE. Percy and R.T. Riding. 1998b. Effect of enhanced UV-B radiation on adaxial leaf surface micromorphology and epicuticular wax biosynthesis of sugar maple. Chemosphere 36: 853–858.

    Article  CAS  Google Scholar 

  • Hall, J.P., L. Magasi, L. Carlson, K. Stolte, E. Niebla, M.L. Bauer, C.E. Gonzalez-Vicente and T. Hernândes-Tejeda. 1996. Health of North American Forests. North American Forestry Commission Report. Natural Resources Canada. Ottawa. 66 pp.

    Google Scholar 

  • Hogsett, W.E., J.E. Weber, D. Tingey, A. Herstrom, E.H. Lee and J.A. Laurence. 1997. An approach for characterizing tropospheric ozone risk to forests. Environ. Management 21: 105–120.

    Article  Google Scholar 

  • Kamosky, D.F. 1977. Evidence for genetic control of response to sulfur dioxide and ozone in Populus tremuloides Michx. Can. J. For. Res. 7: 435–436.

    Article  Google Scholar 

  • Kamosky, D.F. 1981. Changes in eastern white pine stands related to air pollution stress. Mitteilungen der ForstlichenBundesversuchsanstaIt Wien 137: 41–45.

    Google Scholar 

  • Karnosky, D.F., Z.E. Gagnon, D.D. Reed and J.A. Witter 1996a. Growth and biomass allocation of symptomatic and asymptomatic Populus tremuloides clones in response to seasonal ozone exposures. Can. J. For. Res. 22: 1785–1788.

    Article  Google Scholar 

  • Kamosky, D.F., Z.E. Gagnon, R.E. Dickson, M.D. Coleman, E.H. Lee and J.G. Isebrands. 1996b. Changes in growth, leaf abscission, and biomass associated with seasonable tropospheric ozone exposure of Populus trernuloides clones and seedlings. Can. J. For. Res. 16: 23–27.

    Google Scholar 

  • Karnosky, D.F., G.K. Podila, Z. Gagnon, P. Pechter, A. Akkapeddi, Y. Sheng, D.E. Riemenschneider, M.D. Coleman, R.E. Dickson, and J.G. Isebrands 1998. Genetic control of responses to interacting tropospheric ozone and CO2 in Populus tremuloides. Chemosphere 36: 807–812.

    Article  Google Scholar 

  • Karnosky, D., KS. Pregitzer, M. Kubiske, D.D. Reed, J.G. Isebrands, RL. Lindroth, D.R. ZakG.E. Host and G. Hendrey. 1995. Forest-atmosphere carbon transfer and storage-II: Interacting effects of elevated CO2 and 03 on aspen forest ecosystems. In J. Elwood (ed.): DOE Program for Ecosystem Research: Research Summaries. 28–29.

    Google Scholar 

  • Keeling, C.D., T.P. Whort, M Wahlen and J. vander Plicht. 1995. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375: 666–670.

    Article  CAS  Google Scholar 

  • Kelly, M. 1990. Halting global warming. In J. Leggett (ed.): Global Warming, The Greenpeace Report. Oxford University Press, Oxford.

    Google Scholar 

  • Kickert, R.N. and S.V. Krupa. 1990. Forest responses to tropospheric ozone and global change: An analysis. Environ. Pollut. 68: 29–65.

    Article  PubMed  CAS  Google Scholar 

  • Körner, C. 1995. Toward a better experimental basis for upscaling plant responses to elevated CO2 and climate warning. Plant, Cell and Environment 18: 1101–1110.

    Article  Google Scholar 

  • Kossuth, S.V. and R.H. Biggs. 1981. Ultraviolet-B radiation effects on early seedling growth of Pinacea species. Can. J. For. Res. 11: 243–248.

    Google Scholar 

  • Kull, O., A. Sober, M.D. Coleman, R.E. Dickson, J.G. Isebrands, Z. Gagnon and D.F. Karnosky. 1996. Photosynthetic response of aspen clones to simultaneous exposures of ozone and CO2. Can. J. For. Res. 16: 639–648.

    Article  Google Scholar 

  • Loucks, O.L. 1994. Sun-scald on 1993 foliage of white pine (Pinus strobus) linked to ITV-B radiation in Ohio and Ontario. In K. Heidom and B. Tome (eds.): Proceedings International Conference on Ozone Depletion and Ultraviolet radiation: Preparing for the Impacts. The Skies Above Foundation, Victoria. April 27–29, 1994. 39–47.

    Google Scholar 

  • Lloyd, J. and G.D. Farquhar. 1996. The CO2 dependence of photosynthesis, plant-growth responses to elevated atmospheric CO2 concentrations and their interaction with soil nutrient status. I. General principles and forest ecosystems. Funct. Ecol. 10: 4–32.

    Article  Google Scholar 

  • Madronich, S., R.L. McKenzie, M.M. Caldwell and L.O. Bjom. 1995. Changes in ultraviolet radiation reaching the earth’s surface. Ambio 24: 143–152.

    Google Scholar 

  • Mackemess, S. A-H., B.R. Jordan and B. Thomas. 1997. UV-B effects on the expression of genes encoding proteins involved in photosynthesis. In P. Lumsden (ed.): Plants and UV-B: Responses to Environmental Change. Cambridge University Press, Cambridge. 113134

    Google Scholar 

  • Mankovska, B., S. Huttunen and R. Peura. 1989. The effect of air pollution from the Krompachy and Rudnany smelters on Picea abies Karst. Ecologia (CSSR) 8: 49–58.

    Google Scholar 

  • Manning, W.J. and A.V. Tiedemann 1995 Climate change: Potential effects of increased atmospheric carbon dioxide (CO2), ozone (03), and ultraviolet-B (UV-B) radiation on plant diseases. Environ. Pollut. 88: 219–245.

    Article  PubMed  CAS  Google Scholar 

  • Martin, P.I1. 1996. Will forest preserves protect temperate and boreal biodiversity from climate change? For. Ecol. and Management 85: 335–341.

    Article  Google Scholar 

  • McLeod, A.R. 1995. Open-air fumigation of field crops: criteria and design for a new experimental system. Plant Cell Environ. 18: 215–225.

    Article  CAS  Google Scholar 

  • McLeod, A.R. and K.K. Newsham. 1997. Impacts of elevated UV-B radiation on forest ecosystems. In P. Lumsden (ed): Plants and UV-B: Responses to Environmental Change. Cambridge University Press, Cambridge. 247–281

    Chapter  Google Scholar 

  • Miao, S.L., P.M. Wayne and F.A. Bazzaz. 1992. Elevated CO2 differentially alters the responses of co-occurring birch and maple seedlings to a moisture gradient. Oecologia 90: 300–304.

    Google Scholar 

  • Midgley, G.F., S.J.E. Wand and C.F. Musil. 1998. Repeated exposure to enhanced UV-B radiation in successive generations increases developmental instability (leaf fluctuating asymmetry) in a desert annual. Plant, Cell and Environ. 21: 437–442.

    Article  Google Scholar 

  • Miller, P.R. 1973. Oxidant-induced community change in a mixed conifer forest. In Air pollution damage to vegetation. Advances in Chemistry Series No. 122: 101–117.

    Chapter  Google Scholar 

  • Miller, P.R. 1993. Response of forests to ozone in a changing atmospheric environment. Angew. Bot. 67: 42–46.

    CAS  Google Scholar 

  • Miller, P.R., J.R Parmeter, O.C. Taylor and E.A. Cardiff. 1963. Ozone injury to foliage of Pinus ponderosa. Phytopathology 53: 1072–1076.

    CAS  Google Scholar 

  • Miller, P.R. KW. Stolte, D.M. Duriscoe and J. Pronos. 1996. Evaluating ozone air pollution effects on pines in the western United States. USDA Forest Service Pacific Southwest Research Station General Technical Report PSW-GTR-155. 79 pp.

    Google Scholar 

  • Mooney, H.A., B.G. Drake, R.J. Luxmoore, W.C. Oechel and L.F. Pitelka. 1991. Predicting ecosystem responses to elevated CO2 concentrations. BioScience 41: 96–1104.

    Article  Google Scholar 

  • Mueller-Starck, G. 1985. Genetic differences b “tolerant” and “sensitive” beeches (Fagus sylvaticu L.) in an environmental stressed adult forest stand. Silane Genet. 34: 241–247.

    Google Scholar 

  • Musil, C.F. 1995. Differential effects of elevated ultraviolet-B radiation on the photochemical and reproductive performance of dicotyledonous and monoctyledonous arid-environment ephemerals. Plant, Cell and Environ. 18: 844–854.

    Article  CAS  Google Scholar 

  • Musil, C.F. 1996. Accumulated effect of elevated 1JV-B radiation over multiple generationsof the arid-environment annual Dimorphotheca sinuata DC. (Asteraceae). Plant, Cell and Environ. 19: 1017–1027.

    Article  CAS  Google Scholar 

  • Naidu, S.L., J.H. Sullivan, A.H. Teramura and E.H. DeLucia. 1993. The effects of ultraviolet-B radiation on photosynthesis of different-aged needles in field-grown loblolly pine. Tree Physiol. 12: 151–162.

    Article  PubMed  CAS  Google Scholar 

  • Newsham, K.K., M.N.R. Low, P.D. Greenslade, A.R. McLeod and B.A. Emmett. 1997. UV-B radiation influences the abundance and distribution of phylloplane fungi on Quercus robur. New Phytol.

    Google Scholar 

  • Parker, P.G., A.A. Snow, M.D. Schug, G.C. Booton, and P.A. Fuerst. 1998. What molecules can tell us about populations: Choosing and using a molecular marker. Ecology 79: 361382.

    Google Scholar 

  • Percy, K.E. and D.C. Gordon. 1998. Ultraviolet (UV-B) radiation and Canada’s forests: State of science and risk. J. Air Waste Mgmt. Assoc. (In Press)

    Google Scholar 

  • Percy, K.E. and S.I. Cameron. 1997. Forests. In Wardle, D.I., Kerr, J.B., McElroy, C.T. and D.R. Francis (eds.): Ozone Science: A Canadian perspective on the changing ozone layer. CARD 97–3, Environment Canada, Toronto. 97–101

    Google Scholar 

  • Percy, K.E., D.F. Karnosky and B. Mankovska. 1998. Epicuticular wax chemical composition as a bioindicator of bredisposing ozone injury in three aspen clones growing along a natural gradient. In IUFRO 18th International Meeting for Specialists in Air Pollution Effects on Forest Ecosystems Forest Growth Responses to the Pollution Climate of the 21’ Century. (In Press)

    Google Scholar 

  • Peterson, D.L., M.J. Arbaugh and L. Robinson. 1989. Ozone injury and growth trends of ponderosa pine in the Sierra Nevadas. In R.K Olson and A.S. Lefohn (eds.): Effects of air pollution on western forests. Transaction Series No. 16. Pittsburgh, PA. Air and Waste Management Association:293–308.

    Google Scholar 

  • Powell, W., M Morgante, C. Andre, M Hanafey, J. Vogel, S. Tingey, and A. Rafalski. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding 2: 225–238.

    Article  CAS  Google Scholar 

  • Pye, J.M. 1988. Impact of ozone on the growth and yield of trees: A review. J. Environ. Qual. 17: 347–360.

    Article  CAS  Google Scholar 

  • Pyle, J.A. 1997. Global ozone depletion: observations and theory. In P. Lumsden (ed.): Plants and UV-B: Responses to Environmental Change. Cambridge University Press, Cambridge. 3–30

    Chapter  Google Scholar 

  • Schnitzler, J.P., T.P. Jungblut, C. Feicht, M Kofferlein, P. Hutzler, U. Heinzmann, E. Schmelzer, D. Ernst, C. Langbartels and I1. Sandermann, Jr. 19%. Tissue localization of UV-B screening pigments and of chalcone synthase mRNA in needles of Scots pine seedlings. New Phytol. 132: 247–258.

    Google Scholar 

  • SCOPE. 1992. Effects of Increased ultraviolet radiation on biological systems. Scientific Committee on Problems of the Environment ( SCOPE ), Paris.

    Google Scholar 

  • Shaltsa, H., E. Verykokidou, C Harvala, G. Karabou niotis and Y. Mandas. 1994. UV-B protective potential and flavonoid content of leaf hairs of Quercus ilex. Phytochem. 37: 987–990.

    Article  Google Scholar 

  • Sheng, Y., G.K. Podila and D.F. Karnosky. 1997. Differences in 03-induced superoxide dismutase and glutathione antioxidant expression in 03 tolerant and sensitive trembling aspen (Populus tremuloides Michx.) clones. Forest Gen. 4: 25–33.

    Google Scholar 

  • Sullivan, J.H. and A.H. Teramura. 1988. Effects of ultraviolet-B irradiation on seedling growth in the Pinacea. Amer. J. Bot. 75: 225–230.

    Article  Google Scholar 

  • Sullivan, J.H. and A.H. Teramura. 1989. The effects of ultraviolet-B radiation in loblolly pine. 1. growth, photosynthesis and pigment production in greenhouse grown seedlings. Physiol. Plant. 77: 202–207.

    Article  CAS  Google Scholar 

  • Sullivan, J.H. and A.H. Teramura. 1992. The effects of ultraviolet-B radiation on loblolly pine: 2. Growth of field grown seedlings. Trees Struct. and Function 6: 115–120.

    Google Scholar 

  • Sullivan, J.H., A.H. Teramura and L.R Dillenburg. 1994. Growth and photosynthetic responses of field-grown sweetgum (Liquidambar stryaciflua: Hamamelidaceae) seedlings to UV-B radiation. Amer. J. Bot. 81: 826–832.

    Article  CAS  Google Scholar 

  • Sullivan, J.H., B.W. Howells, C.T. Ruhland and T.A. Day. 1996. Changes in leaf expansion and epidermal screening effectiveness in Liquidambar stryaciflua and Pinus taeda in response to UV-B radiation. Physiol. Plant. 98: 349–357.

    Article  CAS  Google Scholar 

  • Taylor, G.E., Jr. and L.F. Pitelka. 1991. Genetic diversity of plant populations and the role of air pollution. In J.R Barker and D.T. Tingey (eds.): Air pollution effects on biodiversity. Van Nostrand Reinhold. New York. 111–130.

    Google Scholar 

  • Taylor, R.M., A.K. Tobin and CM Bray. 1997. DNA damage and repair in plants. In P. Lumsden (ed.): Plants and UV-B: Responses to Environmental Change. Cambridge University Press, Cambridge. 54–93

    Google Scholar 

  • Wang, D., D.F. Kamosky and F.H. Bormann. 1986. Effects of ambient ozone on the productivity of Populus tremuloides Michx. grown under field conditions. Can. J. For. Res. 16: 47–55.

    Article  CAS  Google Scholar 

  • Woodward, F.I., G.B. Thompson and I.F. McKee. 1991. The effects of elevated concentrations of carbon dioxide on individual plants, populations, communities and ecosystems. Ann. Bot. 67 (Supplement 1): 23–38.

    Google Scholar 

  • Yakimchuck, R. and J. Hoddinott. 1994. The influence of ultraviolet-B light and carbon dioxide enrichment on the growth and physiology of seedlings of three conifer species. Can. J For. Res. 24: 1–8.

    Article  Google Scholar 

  • Zeuthen, J., T.N. Mikkelsen, G. Paludan-Muller and R Ro-Poulsen. 1997. Effects of increased UV-B radiation and elevated levels of tropospheric ozone on physiological processes in European beech (Fagus sylvatica). Physiol. Plant. 100: 281–290.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Karnosky, D.F., Percy, K.E., Mankovska, B., Dickson, R.E., Isebrands, J.G., Podila, G.K. (2000). Genetic implications for forest trees of increasing levels of greenhouse gases and UV-B radiation. In: Mátyás, C. (eds) Forest Genetics and Sustainability. Forestry Sciences, vol 63. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1576-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1576-8_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5337-4

  • Online ISBN: 978-94-017-1576-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics