Advertisement

Cardiac Inotropy and Ca Overload

  • Donald M. Bers
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 122)

Abstract

My aim in this chapter is to discuss some of the general mechanisms involved in cardiac inotropy and their relationship with cellular Ca overload. I do not plan to provide a comprehensive review of either inotropic agents or cardiac pathophysiology. I will start by considering four fundamentally different examples of cardiac inotropy: 1) β-adrenergic activation, 2) α-adrenergic activation, 3) hypothermia and 3) cardioactive steroids (digitalis glycosides). Then I will discuss the ways in which intracellular Ca metabolism can go awry, with particular emphasis on Ca overload. Finally, I will address strategic sites for induction of cardiac inotropy. These discussions may help to bring some of the characteristics of specific cellular systems discussed in preceding chapters into a more integrative picture of cellular Ca regulation.

Keywords

Adrenergic Agonist Rabbit Ventricle Increase Action Potential Duration Cardioactive Steroid Rabbit Ventricular Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aass, H., T. Skomedal and J.-B. Osnes. Demonstration of an alpha adrenoceptor-mediated inotropic effect of norepinephrine in rabbit papillary muscle. J. Pharmacol. Exp. Ther. 226: 572–578, 1983.Google Scholar
  2. Akera, T. Pharmacological agents and myocardial calcium. In: Calcium and the Heart GA Langer, ed., Raven Press, New York, pp. 299–331, 1990.Google Scholar
  3. Allen, D.G. and C.H. Orchard. The effects of changes of pH on intracellular calcium transients in mammalian cardiac muscle. J. Physiol. 335: 555–567, 1983.PubMedGoogle Scholar
  4. Allen, D.G., and C.H. Orchard. Myocardial contractile function during ischemia and hypoxia. Circ. Res. 60: 153168, 1987.Google Scholar
  5. Allen, D.G. and J.A. Lee. EMD 53998 increasees tension with little effect on the amplitude of calcium transients in isolated ferret ventricular muscle. J. Physiol. 416: 43P, 1989.Google Scholar
  6. Allen, D.G., D.A. Eisner and C.H. Orchard. Factors influencing free intracellular calcium concentration in quiescent ferret ventricular muscle. J. Physiol. 350: 615–630, 1984a.PubMedGoogle Scholar
  7. Allen, D.G., D.A. Eisner, J.S. Pirolo and G.L. Smith. The relationship between intracellular calcium and contraction in calcium-overloaded ferret papillary muscles. J. Physiol. 364: 169–182, 1985b.PubMedGoogle Scholar
  8. Allen, D.G., JA. Lee and G.L. Smith. The consequences of simulated ischaemia on intracellular Ca2+ and tension in isolated ferret ventricular muscle. J. Physiol. 410: 297–323, 1989.PubMedGoogle Scholar
  9. Alousi, A.A., J.M. Canter, M.J. Montenaro, DJ. Fort and R.A. Ferrari. Cardiotonic activity of milrinone, a new and potent cardiac bipyridine, on the normal and failing heart of experimental animals. J. Cardiovasc. Pharmacol. 5: 792–803, 1983.Google Scholar
  10. Alpert, N.R., E.M. Blanchard, and LA. Mulieri. Tension-independent heat in rabbit papillary muscle. J. Physiol. 414: 433–453, 1989.PubMedGoogle Scholar
  11. Armstrong D. and R. Eckert. Voltage-activated calcium channels that must be phosphorylated to respond to membrane depolarization. Proc. Natl. Acad. Sci. USA 84: 2518–2522, 1987.PubMedGoogle Scholar
  12. Banijamali, H.S., W.D. Gao and H.E.D. J. ter Keurs. Induction of calcium leak from the sarcoplasmic reticulum of rat cardiac trebeculae by ryanodine. Circulation 82: III–215, 1990.Google Scholar
  13. Barcenas-Ruiz, L, D.J. Beuckelmann and W.G. Wier. Sodium-calcium exchange in heart: Membrane currents and changes in [Ca2+]i. Science 238: 1720–1722, 1987.PubMedGoogle Scholar
  14. Beavo, J.A. Multiple isozymes of cyclic nucleotide phosphodiesterase. In: Adv. Second Messengers Phosphoprotein Res. 22: 1–38, 1988.Google Scholar
  15. Beavo, J.A. and D.H. Reifsnyder. Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the desing of selective inhibitors. Trends Pharmacol Sci. 11: 150–155, 1990.Google Scholar
  16. Bechem, M., S. Hebisch and M. Schramm. Ca2+ agonists: New, sensitive probes for Ca2+ channels. Trends Pharmacol Sci. 9: 257–261, 1988.Google Scholar
  17. Benfey, B.G. Function of myocardial a-adrenoceptors. Life Sci. 46: 743–757, 1990.PubMedGoogle Scholar
  18. Bennett, P., L. McKinney, T. Begenisich and R.S. Kass. Adrenergic modulation of the delayed rectifier potassium channel in calf cardiac Purkinje fibers. Biophys. J. 49: 839–848, 1986.Google Scholar
  19. Beresewicz, A. and H. Reuter. The effects of adrenaline and theophylline on action potential and contraction of mammalian ventricular muscle under “rested-state” and “steady-state” stimulation. Arch. Pharmacol. 301: 99107, 1977.Google Scholar
  20. Berlin, J.R., M.B. Cannell and W.J. Lederer. Cellular origins of the transient inward current in cardiac myocytes. Circ. Res. 65: 115–126, 1989.Google Scholar
  21. Bers, D.M. Mechanisms contributing to the cardiac inotropic effect of Na-pump inhibition and reduction of extracellular Na. J. Gen. Physiol. 90: 479–504, 1987b.Google Scholar
  22. Bers, D.M. and D.M. Christensen. Functional interconversion of rest decay and ryanodine effects in rabbit or rat ventricle depends on Na/Ca exchange. J. Mol. Cell. Cardiol. 22: 715–523, 1990.PubMedGoogle Scholar
  23. Bers, D.M. and D. Ellis. Intracellular calcium and sodium activity in sheep heart Purkinje fibers: Effect of changes of external sodium and intracellular pH. Pflügers Arch. 393: 171–178, 1982.PubMedGoogle Scholar
  24. Bers, D.M. and K.T. MacLeod. Cumulative extracellular Ca depletions in rabbit ventricular muscle monitored with Ca selective microelectrodes. Circ. Res. 58: 769–782, 1986.Google Scholar
  25. Bers, D.M., D.M. Christensen and T.X. Nguyen. Can Ca entry via Na-Ca exchange directly activate cardiac muscle contraction ? J. Mol. Cell. Cardiol. 20: 405–414, 1988.PubMedGoogle Scholar
  26. Blanchard, E.M., and R.J. Solaro. Inhibition of the activation and troponin calcium binding of dog cardiac myofibrils by acidic pH. Circ. Res. 55: 382–391, 1984.PubMedGoogle Scholar
  27. Blinks, J.R. and M. Endoh. Sulmazol (AR-L 115 BS) alters the relation between [Ca++] and tension in living canine ventricular muscle. J. Physiol. 353: 63P, 1984.Google Scholar
  28. Blinks, J.R. and M. Endoh. Modification of myofibrillar responsiveness to Ca++ as an inotropic mechanism. Circulation 73: III–85, 1986.Google Scholar
  29. Blinks, J.R. and J. Koch-Weser. Physical factors in the analysis of the actions of drugs on myocardial contractility. Pharmacol. Rev. 15: 531–599, 1963.Google Scholar
  30. Blood, B.E. The influences of low doses of ouabain and potassium ions on sheep Purkinje fibre contractility. J. Physiol. 266: 76P–77P, 1975.Google Scholar
  31. Bode, D.C. and L.L. Brunton. Adrenergic, cholinergic, and other hormone receptors on cardiac myocytes. In: Isolated Adult Cardiomyocytes H.P. Piper and G. Isenberg, CRC Press, pp. 163–202, 1989.Google Scholar
  32. Bode, D.C., J. Kanter and L.L. Brunton. Soluble cyclic nucleotide phosphodiesterases in isolated rat ventricular myocytes. FASEB J. A-295, 1989.[9]Google Scholar
  33. Bountra, C. and R.D. Vaughan-Jones. Effect of intracellular and extracellular pH on contraction in isolated mammalian cardiac tissue. J. Physiol. 418: 163–187, 1989.PubMedGoogle Scholar
  34. Briggs, G.M. and D.M. Bers. Role of calcium current in hypothermic inotropy in myocytes isolated from rabbit ventricles. Biophys. J. 57: 346a, 1990.Google Scholar
  35. Bristow, M.R., R. Ginsburg, W. Minobe, R.S. Cubicciotti, W.S. Sageman, K. Lurie, M.E. Billingham, D.C. Harrison and E.B. Stinson. Decreased catecholamine sensitivity and beta-adrenergic receptor density in failing human hearts. New Engl. J. Med. 307: 205–211, 1982.Google Scholar
  36. Bristow, M.R., R. Ginsburg, V. Umans, M. Fowler, W. Minobe and E.B. Stinson. ß1- and ß2-adrenergic receptor subpopulations in nonfailing and failing human ventricular myocardium: Coupling of both receptor subtypes to muscle contraction and selective ß1-receptor downregulation in heart failure. Circ. Res. 59: 297–309, 1986.PubMedGoogle Scholar
  37. Brodde, O.E., F.J. Feifert and H.J. Krehl. Coexistence of Si-and ß2-adrenoreceptors in the rabbit heart: Quantitative analysis of the regional distribution by (-)-H-dihydroalprenolol binding. J. Cardiovasc. Pharmacol. 4: 34–43, 1982.Google Scholar
  38. Brown, J.H. and L.G. Jones. Phosphoinositide metabolism in the heart. In: Phosphoinositides and Receptor Mechanisms. Putney, J.W. Jr., ed. Alan R. Liss, pp. 245–270, 1986.Google Scholar
  39. Bruckner, R. and H. Scholz. Effects of alpha-adrenoceptor stimulation with phenylephrine in the presence of propranolol on force of contraction, slow inward current and cyclic AMP content in the bovine heart. Br. J. Pharmacol. 82: 223–232, 1984.PubMedGoogle Scholar
  40. Burt, J.M. Block of intercellular communication: Interaction of intracellular H+ and Ca2+. Am. J. Physiol. 253: C607–C612, 1987.Google Scholar
  41. Cachelin, A.B., J.E. Depeyer, S. Kokubun and H. Reuter. Cat+ channel modulation by 8-bromocyclic AMP in cultured heart cells. Nature 304: 462–464, 1983.Google Scholar
  42. Cannell, M.B. and W.J. Lederer. The arrhythmogenic current In in the absence of electrogenic sodium-calcium exchange in sheep cardiac Purkinje fibres. J. Physiol. 374: 201–219, 1986.PubMedGoogle Scholar
  43. Capogrossi, M.C. and E.G. Lakatta. Frequency modulation and synchronization of spontaneous oscillations in cardiac cells. Am. J. Physiol. 248: H412–H418, 1985.Google Scholar
  44. Capogrossi, M.C. and E.G. Lakatta. Intracellular calcium and activation of contraction as studied by optical techniques. In: Isolated Adult Cardiomyocytes H.M. Piper and G. Isenberg, CRC Press, pp. 183–212, 1990.Google Scholar
  45. Capogrossi, M.C., A.A. Kort, H.A. Spurgeon and E.G. Lakatta. Single adult rabbit and rat cardiac myocytes retain the Ca2+ and species-dependent systolic and diastolic contractile properties of intact muscle. J. Gen. Physiol. 88: 589–613, 1986a.PubMedGoogle Scholar
  46. Capogrossi,M.C., B.A. Suarez-Isla and E.G. Lakatta. The interaction of electrically stimulated twitches and spontaneous contractile waves in single cardiac myocytes. J. Gen. Physiol. 88: 615–633, 1986b.Google Scholar
  47. Capogrossi, M.C., S. Houser, A. Bahinski and E.G. Lakatta. Synchronous occurrence of spontaneous localized calcium release from the sarcoplasmic reticulum generates action potentials in rat cardiac ventricular myocytes at normal resting membrane potential. Cire. Res. 61: 498–503, 1987.Google Scholar
  48. Capogrossi, M.C., M.D. Stern, H.A. Spurgeon and E.G. Lakatta. Spontaneous Ca2+ release from the sarcoplasmic reticulum limits Ca2+-dependent twitch potentiation in individual cardiac myocytes. J. Gen. Physiol. 91: 133–155, 1988.PubMedGoogle Scholar
  49. Cavalié, A., T.F. McDonald, D. Pelzer and W. Trautwein. Temperature-induced transitory and steady-state changes in the calcium current of guinea pig ventricular myocytes. Pflugers Arch. 405: 294–296, 1985.Google Scholar
  50. Chapman, R.A. Sodium/calcium exchange and intracellular calcium buffering in ferret myocardium: An ion-sensitive microelectrode study. J. Physiol 373: 163–179, 1986.PubMedGoogle Scholar
  51. Cheon, J. and J.P. Reeves. Site density of the sodium-calcium exchange carrier in reconstituted vesicles from bovine cardiac sarcolemma. J. Biol. Chem. 263: 2309–2315, 1988.Google Scholar
  52. Chien, K.R. and R. Engler. Calcium and ischemic myocardial injury. In: Calcium and the Heart G.A. Langer, ed., Raven Press, pp. 333–354, 1990.Google Scholar
  53. Cohen, I., J. Daut and D. Noble. An analysis of the actions of low concentrations of ouabain on membrane currents in Purkinje fibers. J. Physiol. 260: 75–103, 1976.PubMedGoogle Scholar
  54. Colquhoun, D., E. Neher, H. Reuter and C.F. Stevens. Inward current channels activated by intracellular Ca in cultured cardiac cells. Nature 294: 752–754, 1981.Google Scholar
  55. Colvin, RA., T.F. Ashavaid and L.G. Herbette. Structure-function studies of canine cardiac sarcolemmal membranes. I. Estimation of receptor site densities. Biochim. Biophvs. Acta 812: 601–608, 1985.Google Scholar
  56. Connors, S.P. and D.A. Terrar. The effect of forskolin on activation and de-activation of time-dependent potassium current in ventricular cells isolated from guinea-pig heart. J. Physiol. 429: 109P, 1990.Google Scholar
  57. Coraboeuf, E., E. Deroubaix and J. Hoerter. Control of ionic permeabilities in normal and ischemic heart. Circ. Res. 38: I92-I-97, 1976.Google Scholar
  58. Danko, S., D.H. Kim, FA. Sreter and N. Ikemoto. Inhibitors of Ca release from the isolated sarcoplasmic reticulum. II. The effects of dantrolene on Ca release induced by caffeine, Ca and depolarization. Biochim. Biophys. Acta 816: 18–24, 1985.Google Scholar
  59. Debetto, P., F. Cusinato and S. Luciani. Temperature dependence of Nat/Ca exchange activity in beef heart sarcolemmal vesicles and proteoliposomes. Arch. Biochem. Biophys. 278: 205–210, 1990.Google Scholar
  60. Deitmer, J.W. and D. Ellis. Interactions between the regulation of the intracellular pH and sodium activity of sheep cardiac Purkinje fibres. J. Physiol. 304: 471–488, 1980.PubMedGoogle Scholar
  61. Désilets, M. and C.M. Baumgarten. Isoproterenol directly stimulates the Na+-K+ pump in isolated cardiac myocytes. Am. J. Physiol. 251: H218–H225, 1986.PubMedGoogle Scholar
  62. DiFrancesco, D. A new interpretation of the pacemaker current in calf Purkinje fibres. J. Physiol. 314: 359–376, 1981a.Google Scholar
  63. DiFrancesco, D. A study of the ionic nature of the pacemaker current in calf Purkinje fibres. J. Physiol. 314: 377393,1981b.[9]Google Scholar
  64. DiFrancesco, D. Characterization of single pacemaker channels in cardiac sino-atrial node cells. Nature 324: 470473, 1986.Google Scholar
  65. DiFrancesco, D. and C. Tromba. Channel activity related to pacemaking. In: Isolated Adult Cardiomyocytes H.P. Piper and G. Isenberg, CRC Press, pp. 97–116, 1989.Google Scholar
  66. DiFrancesco, D., A. Ferroni, M. Mazzanti and C. Tromba. Properties of the hyperpolarizing-activated current (if) in cells isolated from the rabbit sino-atrial node. J. Physiol. 377: 61–88, 1986.Google Scholar
  67. Donaldson, S.K.B. and L. Hermansen. Differential, direct effects of H+ on Ca2+-activated force of skinned fibers from the soleus, cardiac and adductor magnus muscles of rabbit. Pflügers Arch. 376: 55–65, 1978.Google Scholar
  68. Downey, J.M. Free radicals and their involvement during long-term myocardial ischemia and reperfusion. Ann. Rev. Physiol. 52: 487–504, 1990.Google Scholar
  69. Doyle, D.D., D.M. Brill, J.A. Wasserstrom, T. Karrison and E. Page. Saxitoxin binding and “fast” sodium channel inhibition in sheep heart plasma membrane. Am. J. Physiol. 249: H328–H336, 1985.PubMedGoogle Scholar
  70. Eisner, D.A. and W.J. Lederer. Characterisation of the electrogenic sodium pump in cardiac Purkinje fibres. J. Physiol. 303: 441–474, 1980.PubMedGoogle Scholar
  71. Eisner, D.A. and M. Valdeolmillos. A study of intracellular calcium oscillations in sheep cardiac Purkinje fibres measured at the single cell level. J. Physiol. 372: 539–556, 1986.PubMedGoogle Scholar
  72. Eisner, DA., W.J. Lederer and R.D. Vaughan-Jones. The quantitative relationship between twitch tension and intracellular activity in sheep cardiac Purkinje fibres. J. Physiol. 355: 251–266, 1984.PubMedGoogle Scholar
  73. Eisner, D.A., W.J. Lederer and R.D. Vaughan-Jones. The quantitative relationship between twitch tension and intracellular sodium activity in sheep cardiac purkinje fibres. J. Physiol. 355: 251–266, 1984.PubMedGoogle Scholar
  74. El-Saleh, S.C. and R.J. Solaro. Troponin I enhances pH-induced depression of Cat+ binding to the regulatory sites in skeletal troponin C. J. Biol. Chem. 263: 3274–3278, 1988.Google Scholar
  75. Ellis, D. and K.T. MacLeod. Sodium-dependent control of intracellular pH in Purkinje fibers of sheep heart. J. Physiol. 359: 81–105, 1985.PubMedGoogle Scholar
  76. Endoh, M. and J.R. Blinks. Actions of sympathomimetic amines on the Ca2+ transients and contractions of rabbit myocardium: Reciprocal changes in myofibrillar responsiveness to Cat+ mediated through a-and ßadrenoceptors. Circ. Res. 62: 247–265, 1988.Google Scholar
  77. Endoh, M., T. Yanagisawa, T. Morita and N. Taira. Differential effectds of sulmazole (AR-L 115 BS) on contractile force and cyclic AMP levels in canine vent ricular muscle: Comparison with MDL 17,043. J. Pharmacol. Exp. Ther. 234: 267, 1985.Google Scholar
  78. Fabiato, A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am. J. Physiol. 245: Cl-C14, 1983.Google Scholar
  79. Fabiato, A. Use of aequorin for the appraisal of the hypothesis of the release of calcium from the sarcoplasmic reticulum induced by a change of pH in skinned cardiac cells. Cell Calcium 6: 95–108, 1985e.PubMedGoogle Scholar
  80. Fabiato, A. and F. Fabiato. Excitation-contraction coupling of isolated cardiac fibers with disrupted or closed sarcolemmas. Calcium-dependent cyclic and tonic contractions. Circ. Res. 31: 293–307, 1972.PubMedGoogle Scholar
  81. Fabiato, A. and F. Fabiato. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J. Physiol. 276: 233–255, 1978a.PubMedGoogle Scholar
  82. Fabiato, A. and F. Fabiato. Calcium induced release of calcium from the sarcoplasmic reticulum and skinned cells from adult human, dog, cat, rabbit, rat and frog hearts and from fetal and newborn rat ventricles. Ann. N.Y. Arad. Sci. 307: 491–522, 1978b.Google Scholar
  83. Fedida, D., D. Noble, A.C. Rankin and A.J. Spindler. The arrhythmogenic transient inward current Iti and related contraction in isolated guinea-pig ventricular myocytes. J. Physiol. 392: 523–542, 1987b.PubMedGoogle Scholar
  84. Ferrier, G.R. Digitalis arrhythmias: Role of oscillatory afterpotentials. Proe. Cardiovasc. Dis. 19: 459–474, 1977.Google Scholar
  85. Ferrier, G.R. and G.K. Moe. Effect of calcium on acetyl-strophanthidin-induced transient depolarizations in canine Purkinje tissue. Circ. Res. 33: 508–515, 1973.Google Scholar
  86. Ferroni, C., H.A. Spurgeon, M. Klockow, E.G. Lakatta and M.C. Capogrossi. Contractile potentiation without increasing cytosolic calcium in single rat ventricular myocytes. FASEB J. 3: A1039, 1989.Google Scholar
  87. Fields, J.Z., W.R. Roeske, E. Morkin and H.I. Yamamura. Cardiac muscarinic cholinergic receptors: Biochemical identification and characterization. J. Biol. Chem. 253: 3251–3258, 1978.PubMedGoogle Scholar
  88. Fry, C.H. and P.A. Poole-Wilson. Effects of acid-base changes on excitation-contraction coupling in guinea-pig and rabbit cardiac ventricular muscle. J. Physiol. 313: 141–160, 1981.PubMedGoogle Scholar
  89. Gadsby, D.C. ß-adrenoceptor agonists increase membrane K+ conductance in cardiac Purkinje fibres. Nature 306: 691–693, 1983.Google Scholar
  90. Gambassi, G., P.S. Blank, H.A. Spurgeon, O. Chung, E.G. Lakatta and M.C. Capogrossi. An increase in cytosolic pH accompanies the positive inotropic effect of a-adrenergic stimulation. Circulation 82: III–562, 1990.Google Scholar
  91. Gaskell, W.H. On the tonicity of the heart and blood vessels. J. Physiol. 3: 48–75, 1880.PubMedGoogle Scholar
  92. Glynn, I.M. The action of cardiac glycosides on ion movements. Pharmacol. Rev. 16: 381–407, 1964.Google Scholar
  93. Godfraind, T. and J. Ghysel-Burton. Binding sites related to ouabain-induced stimulation or inhibition of the sodium pump. Nature 265: 165–166, 1977.PubMedGoogle Scholar
  94. Goldstein, M.A. and L. Traeger. Ultrastructural changes in postnatal development of the cardiac myocytes. In: The Developing Heart M.J. Legato, ed., Martinus Nijhoff Publishing, Boston, pp. 1–20, 1985.Google Scholar
  95. Hamlyn, J.M., D.W. Harris and J.H. Ludens. Digitalis-like activity in human plasma. J. Biol. Chem. 264: 7395–7404, 1989.Google Scholar
  96. Harrison, S.M. and D.M. Bers. The influence of temperature on the calcium sensitivity of the myofilaments of skinned ventricular muscle from the rabbit. J. Gen. Physiol. 93: 411–427, 1989a.PubMedGoogle Scholar
  97. Hartmann, H.A., N.J. Mazzocca, R.B. Kleiman and S.R. Houser. Effects of phenylephrine on calcium current and contractility of feline ventricular myocytes. Am. J. Physiol. 255: H1173–H1180, 1988.PubMedGoogle Scholar
  98. Harvey, R.D. and J.R. Hume. Autonomic regulation of a chloride current in heart. Science 244: 983–985, 1989.Google Scholar
  99. Hayes, J.S. and S.E. Mayer. Regulation of guinea pig heart phosphorylase kinase by cAMP, protein kinase, and calcium. Am. J. Physiol. 240: E340–E349, 1981.PubMedGoogle Scholar
  100. Hedberg, A., K.P. Minneman and P.B. Molinoff. Differential distribution of beta-1 and beta-2 adrenergic receptors in cat and guinea-pig heart. J. Pharmacol. Exp. Ther. 212: 503–508, 1980.Google Scholar
  101. Herzig, J.W. and J.C. Ruegg. Myocardial cross-bridge activity and its regulation by Ca++, phosphate and stretch. In: Myocardial Failure G. Riecker, A. Weber and J. Goodwin (eds.), International Boehringer Mannheim Symposium, 1977.Google Scholar
  102. Hescheler, J., D. Pelzer, G. Trube and W. Trautwein. Does the organic calcium channel blocker D600 act from inside or outside on the cardiac cell membrane? Pflügers Arch. 393: 287–291, 1982.PubMedGoogle Scholar
  103. Hescheler, J., M. Kameyama and W. Trautwein. On the mechanism of muscarinic inhibition of the cardiac Ca current. Pflügers Arch. 407: 182–189, 1986.Google Scholar
  104. Hescheler, J., M. Kameyama, W. Trautwein, G. Mieskes and H.-D. Doling. Regulation of the cardiac calcium channel by protein phosphatases. Eur. J. Biochem. 165: 261–266, 1987a.Google Scholar
  105. Hescheler, J., M. Tang, B. Jastorff and W. Trautwein. On the mechanism of histamine induced enhancement of the cardiac Cat+ current. Pflügers Arch. 419: 23–29, 1987b.Google Scholar
  106. Hescheler, J., H. Nawrath, M. Tang and W. Trautwein. Adrenoreceptor-mediated changes of excitation and contraction in ventricular heart muscle from guinea-pigs and rabbits. J. Physiol. 397: 657–670, 1988.PubMedGoogle Scholar
  107. Hess, P. Elementary properties of cardiac calcium channels: A brief review. Can. J. Physiol. Pharmacol. 66: 1218–1223, 1988.Google Scholar
  108. Hess, P. and R.W. Tsien. Mechanism of ion permeation through calcium channels. Nature 309: 453–456, 1984.Google Scholar
  109. Hess, P., J.B. Lansman and R.W. Tsien. Different modes of Ca channel gating behavior favored by dihydropyridine Ca agonists and antagonists. Nature 311: 538–544, 1984.Google Scholar
  110. Hess, P., J.B. Lansman and R.W. Tsien. Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells. J. Gen. Physiol. 88: 293319, 1986.Google Scholar
  111. Hiramoto, T., H. Kushida and M. Endoh. Further characterization of the myocardial alpha-adrenoceptors mediating positive inotropic effects in the rabbit myocardium. Eur. J. Pharmacol. 152: 301–310, 1988.Google Scholar
  112. Hof, R.P., U.T. Regg, A. Hof and A. Vogel. Stereoselectivity at the calcium channel: Opposite action of the enantiomers of a 1,4-dihydropyridine. J. Cardiovasc. Pharmacol. 7: 689–693, 1985.Google Scholar
  113. Hoh, J.F.Y., G.H. Rossmanith, L.J. Kwan and A.M. Hamilton. Adrenaline increases the rate of cycling of crossbridges in rat cardiac muscle as measured by pseudo-random binary noise-modulated perturbation analysis. Circ. Res. 62: 452–461, 1988.Google Scholar
  114. Holland, D.R., J.H. Wikel, R.F. Kauffman, J.K. Smallwood, K.M. Zimmerman, B.G. Utterback, J.A Turk and M.I. Steinberg. LY249933: A cardioselective 1,4-dihydropyridine with positive inotropic activity. J. Cardiovasc. Pharmacol. 14: 483–491, 1989.Google Scholar
  115. Holmberg, S.R.M., P.A. Poole-Wilson and A.J. Williams. Differential effects of phosphodiesterase inhibitors on the cardiac sarcoplasmic reticulum calcium release channel. Circulation 82: III–519, 1990.Google Scholar
  116. Hougen, T.J., N. Spicer and T.W. Smith. Stimulation of monovalent cation active transport by low concentrations of cardiac glycosides. J. Clin. Invest. 68: 1207–1214, 1981.Google Scholar
  117. Im, W-B. and C.O. Lee. Quantitative relation of twitch and tonic tensions to intracellular Na+ activity in cardiac Purkinje fibers. Am. J. Physiol. 247: C478–C487, 1984.Google Scholar
  118. Irisawa, H. and R. Sato. Intra-and extracellular actions of proton on the calcium current of isolated guinea pig ventricular cells. Circ. Res. 59: 348–355, 1986.Google Scholar
  119. Ishide, N., T. Urayama, K. Inoue, T. Komaru and T. Takishima. Propagation and collision characteristics of calcium waves in rat myocytes. Am. J. Physiol. 259: H940–H950, 1990.PubMedGoogle Scholar
  120. Jakob, H., H. Nawrath and J. Rupp. Adrenoceptor-mediated changes of action potential and force of contraction in human isolated ventricular heart muscle. Br. J. Pharmacol. 94: 584–590, 1988.PubMedGoogle Scholar
  121. Jaquet, K. and L.M.G. Heilmeyer. Influence of association and of positive inotropic drugs on calcium binding to cardiac troponin C. Biochem. Biophys. Res. Commun. 145: 1390–1396, 1987.Google Scholar
  122. Jennings, R.B., C.E. Murry, C. Steenbergen, Jr. and K.A. Reimer. Development of cell injury in sustained acute ischemia. Circulation 82: II-2-II-12, 1990.Google Scholar
  123. Jones, L.G., D. Goldstein and J.H. Brown. Guanine nucleotide-dependent inositol trisphosphate formation in chick heart cells. Circ. Res. 62: 299–305, 1988.Google Scholar
  124. Kameyama, M., F. Hofmann and W. Trautwein. On the mechanisms of ß-adrenergic regulation of the Ca channel in the guinea-pig heart. Pflügers Arch. 405: 285–293, 1985.Google Scholar
  125. Karagueuzian, H.S. and B.G. Katzung. Voltage-clamp studies of transient inward current and mechanical oscillations induced by ouabain in ferret papillary muscle. J. Physiol. 327: 255–271, 1982.PubMedGoogle Scholar
  126. Karliner, J.S., P. Barnes, C.A. Hamilton and C.T. Dollery. Alpha-adrenergic receptors in guinea pig myocardium: Identification by binding of a new radioligand, [3H]prazosin, Biochem. Biophys. Res. Commun. 90: 142–149, 1979.Google Scholar
  127. Kass, R.S., W.J. Lederer, R.W. Tsien and R. Weingart. Role of calcium ions in transient inward currents and after Zcontractions induced by strophanthidin in cardiac Purkinje fibers. J. Physiol. 281: 187–208, 1978.PubMedGoogle Scholar
  128. Kentish, J.C. The effects of inorganic phosphate and creatine phosphate on force production in skinned muscles from rat ventricle. J. Physiol. 370: 585–604, 1986.PubMedGoogle Scholar
  129. Kentish, J.C. and W.G. Nayler. The influence of pH on the Ca2+-regulated ATPase of cardiac and white skeletal myofibrils. J. Mol. Cell. Cardiol. 11: 611–617, 1979.PubMedGoogle Scholar
  130. Kihara, Y., J.K. Gwathmey, W. Grossman and J.P. Morgan. Mechanisms of positive inotropic effects and delayed relaxation produced by DPI 201–106 in mammalian working myocardium: Effects on intracellular calcium handling. Br. J. Pharmacol. 96: 927–939, 1989.PubMedGoogle Scholar
  131. Kimura, J. Na-Ca exchange and Ca-sensitive non-selective cation current components of transient inward current in isolated cardiac ventricular cells of the guinea-pig. J. Physiol. 407: 79P, 1988.Google Scholar
  132. Kimura, J., A. Noma and H. Irisawa. Na-Ca exchange current in mammalian heart cells. Nature 319: 596–597, 1986.Google Scholar
  133. Kimura, J., S. Miyamae and A. Noma. Identification of sodium-calcium exchange current in single ventricular cells in guinea pig. J. Physiol. 384: 199–222, 1987.PubMedGoogle Scholar
  134. Kohmoto, O., K.W. Spitzler, M.A. Movesian and W.H. Barry. Effects of intracellular acidosis on [CaZ+ji transients, transsarcolemmal Ca fluxes, and contraction in ventricular myocytes. Cire. Res. 66: 622–632, 1990.[9]Google Scholar
  135. Konishi, M., A. Olson, S. Hollingworth and S.M. Baylor. Myoplasmic binding of fura-2 investigated by steady-state fluorescence and absorbance measurements. Biophys. J. 54: 1089–1104, 1988.Google Scholar
  136. Kort, AA. and E.G. Lakatta. Calcium-dependent mechanical oscillations occur spontaneously in unstimulated mammalian cardiac tissues. Circ. Res. 54: 396–404, 1984.Google Scholar
  137. Kort, AA. and E.G. Lakatta. Bimodal effect of stimulation on light fluctuation transients monitoring spontaneous sarcoplasmic reticulum calcium release in rat cardiac muscle. Circ. Res. 63: 960–968, 1988.Google Scholar
  138. Kort, A.A. and E.G. Lakatta. Spontaneous sarcoplasmic reticulum calcium release in rat and rabbit cardiac muscle: Relationship to transient and rested state twitch tension. Circ. Res. 63: 969–979, 1988.Google Scholar
  139. Kovacs, R.J., R.T. Nelson, H.K.B. Simmerman and L.R. Jones. Phospholamban forms CaZ+-selective channels in lipid bilayers. J. Biol. Chem. 263: 18364–18368, 1988.PubMedGoogle Scholar
  140. Kruta, V. Sur l’activité rhythmique du muscle cardiaque I. Variations de la réponse méchanique en fonction du rhythme. Arch. Int. Physiol. 45: 332–357, 1937.Google Scholar
  141. Kruta, V. Sur l’activité rythmique du muscle cardiaque. II. Variations, en fonction de la température, des relations entre la réponse mécanique et le rythme. Arch. Int. Physiol. 47: 35–62, 1938.Google Scholar
  142. Lakatta, E.G. and D.L. Lappé. Diastolic scattered light fluctuation, resting force and twich force in mammalian cardiac muscle. J. Physiol. 315: 369–394, 1981.PubMedGoogle Scholar
  143. Lakatta, E.G., M.C. Capogrossi, H.A. Spurgeon and M.D. Stern. Characteristics and functional implications of spontaneous sarcoplasmic reticulum-generated cytosolic calcium oscillations in myocardial tissue. In: Cell Calcium Metabolism G. Fiskum, ed., Plenum Press, New York pp. 529–543, 1989.Google Scholar
  144. Langer, G.A. Calcium exchange in dog ventricular muscle. Relation to frequency of contraction and maintenance of contractility. Circ. Res. 361: 361–378, 1965.Google Scholar
  145. Langer, GA. and A.J. Brady. The effects of temperature upon contraction and ionic exchange in rabbit ventricular myocardium. Relation to control of active state. J. Gen. Physiol. 52: 682–713, 1968.Google Scholar
  146. Langer, GA. and S.D. Serena. Effects of strophanthidin upon contraction and ionic exchange in rabbit ventricular myocardium, relative to control of active state. J. Mol. Cell. Cardiol. 1: 65–90, 1970.PubMedGoogle Scholar
  147. Lappé, D.L. and E.G. Lakatta. Intensity fluctuation spectroscopy monitors contractile activation in “resting” cardiac muscle. Science 207: 1369–1371, 1980.Google Scholar
  148. Lazdunski, M., C. Frelin and P. Vigne. The sodium/hydrogen exchange system in cardiac cells: Its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. J. Mol. Cell Cardiol. 17: 1029–1042, 1985.PubMedGoogle Scholar
  149. Leblanc, N. and J.R. Hume. Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science 248: 372–376, 1990.Google Scholar
  150. Lee, C.O. 200 years of digitalis: The emerging central role of the sodium ion in the control of cardiac force. Am. J. Physiol. 249: C367–C378, 1985.PubMedGoogle Scholar
  151. Lee, C.O. and M. Dagostino. Effect of strophanthidin on intracellular Na ion activity and twitch tension of constantly driven canine cardiac Purkinje fibers. Biophys. J. 40: 185–198, 1982.Google Scholar
  152. Lee, C.O. and M. Vassalle. Modulation of intracellular Na+ activity and cardiac force by norepinephrine and Cat+. Am. J. Physiol. 244: C110–0114, 1983.PubMedGoogle Scholar
  153. Lee, C.O., D.H. Kang, J.H. Sokol and K.S. Lee. Relation between intracellular Na ion activity and tension of sheep cardiac Purkinje fibers exposed to dihydro-ouabain. Biophys J. 29: 315–330, 1980.Google Scholar
  154. Lee, H.-C., R. Mohabir, N. Smith, M.R. Franz and W.T. Clusin. Effect of ischemia on calcium-dependent fluorescence transients in rabbit hearts containing Indo 1. Circulation 78: 1047–1059, 1988.Google Scholar
  155. Lehninger, A.L. Ca2+ transport by mitochondria and its possible role in the cardiac excitation-contraction-relaxation cycle. Circ. Res. 34/35 Suppl. III: 83–89, 1974.Google Scholar
  156. Lewartowski, B. and B. Pytkowski. Cellular mechanism of the relationship between myocardial force and frequency of contractions. Frog. Biophys. Moles. Biol. 50: 97–120, 1987.Google Scholar
  157. Lewartowski, B. and K. Zdanowski. Net Ca2+ influx and sarcoplasmic reticulum Ca2 + uptake in resting single myocytes of the rat heart: Comparison with guinea-pig. J. Mol. Cell Cardiol. 22: 1221–1229, 1990.PubMedGoogle Scholar
  158. Lindemann, J.P. and A.M. Watanabe. Mechanisms of adrenergic and cholinergic regulation of myocardial contractility. In: Physiolozy and Pathophvsiologv of the Heart N. Sperelakis, ed. Kluwer Academic Publishers, Boston, pp. 423–452, 1989.Google Scholar
  159. Lipp, P. and L. Pott. Transient inward current in guinea-pig atrial myocytes reflects a change of sodium-calcium exchange current. J. Physiol. 397: 601–630, 1988.PubMedGoogle Scholar
  160. Ma, J., M.Fill, C.M. Knudson, K.P. Campbell and R. Coronado. Ryanodine receptor of skeletal muscle is a gap junction-type channel. Science 242: 99–102, 1988.PubMedGoogle Scholar
  161. Mandel, F., E.G. Kranias, A.G. De Gende, M. Sumida and A. Schwartz The effect of pH on the transient-state kinetics of Ca2+-Mg2+ ATPase of cardiac sarcoplasmic reticulum. Circ. Res. 50: 310–317, 1982.PubMedGoogle Scholar
  162. Marban, E. and R.W. Tsien. Enhancement of calcium current during digitalis inotropy in mammalian heart: Positive feedback regulation by intracellular calcium? J. Physiol. 329: 589–614, 1982.Google Scholar
  163. Marban, E., T.J. Rink, R.W. Tsien and R.Y. Tsien. Free Ca in hart muscle at rest and during contraction measured with Ca2+-sensitive microelectrodes. Nature 286: 845–850, 1980.PubMedGoogle Scholar
  164. McCall, E., S.M. Harrison, M.R. Boyett and C.H. Orchard. Intracellular sodium activity (aiNa) intracellular pH (pHi) and contractility in isolated rat ventricular myocytes during respiratory acidosis. J. Physiol. 429: 17P, 1990.Google Scholar
  165. Mclvor, M.E., C.H. Orchard, and E.G. Lakatta. Dissociation of changes in apparent myofibrillar Ca2+ sensitivity and twitch relaxation induced by adrenergic and cholinergic stimulation in isolated ferret cardiac muscle. J. Gen. Physiol. 92: 509–529, 1988.Google Scholar
  166. Mechmann, S. and L. Pott. Identification of Na-Ca exchange current in single cardiac myocytes. Nature 319: 597599, 1986.Google Scholar
  167. Michel, M.C., K.U. Knowlton, G. G.oss and K.R. Chien. al-adrenergic receptor subtypes mediate distinct functions in adult and neonatal rat heart. Circulation 82: III–561, 1990.Google Scholar
  168. Minneman, K.P. al-Adrenergic receptor subtypes, inositol phosphates, and sources of cell Ca2+. Pharmacol. Rev. 40: 87–119, 1988.Google Scholar
  169. Minneman, K.P., C. Han and P.W. Abel. Comparison of a1-adrenergic receptor subtypes distinguished by chloroethylclonindine and WB 4101. Mol. Pharmacol. 33: 509–514, 1988.PubMedGoogle Scholar
  170. Morgan, J.P. The effects of digitalis on intracellular calcium transients in mammalian working myocardium as detected with aequorin. J. Mol. Cell. Cardiol. 17: 1065–1075, 1985.PubMedGoogle Scholar
  171. Mulder, B.J.M., P.P. de Tombe and H.E.D.J. ter Keurs. Spontaneous and propagated contractions in rat cardiac trabeculae. J. Gen. Physiol. 93: 943-%1, 1989.Google Scholar
  172. Nakanishi, T., M. Seguchi, T. Tsuchiya, S. Yasukouchi and A. Takao. Effect of acidosis on intracellular pH and calcium concentration in the newborn and adult rabbit myocardium. Circ. Res. 67: 111–123, 1990.PubMedGoogle Scholar
  173. Nawrath, H. Adrenoceptor-mediated changes in excitation and contraction in isolated heart muscle preparations. J. Cardiovasc. Pharmacol. 14: Sl-S10, 1989.Google Scholar
  174. Nawrath, H., J. Hescheler, H. Jakob, B. Kaufmann, M. Rombusch, J. Rupp, M. Tang and W. Trautwein. Adrenoceptor-mediated changes of excitation and contraction in isolated heart muscle preparations. Arch. Pharmacol. 338: R16, 1988.Google Scholar
  175. Nichols, C.G. and W.J. Lederer. The regulation of ATP-sensitive K+ channel activity in intact and permeabilized rat ventricular myocytes. J. Physiol. 423: 91–110, 1990.PubMedGoogle Scholar
  176. Noble, D. Ionic bases of rhythmic activity in the heart. In: Cardiac Electrophysiologv and Arrhythmias D.J. Zipes and J. Jalite, Grune and Stratton, pp. 3–11, 1985.Google Scholar
  177. Noble, D. Mechanism of action of therapeutic levels of cardiac glycosides. Cardiovascular Res. 14: 495–514, 1980.Google Scholar
  178. Noble, D. The surprising heart: A review of recent progress in cardiac electrophysiology. J. Physiol. 353: 1–50, 1984.PubMedGoogle Scholar
  179. Noma, A. ATP-regulated K+ channels in cardiac muscle. Nature 305: 147–148, 1983.Google Scholar
  180. Nosek, T.M., K.Y. Fender and R.E. Godt. It is diprotonated inorganic phosphate that depresses force in skinned skeletal muscle fibers. Science 236: 191–193, 1987.Google Scholar
  181. O’Neill, S.C., J.G. Mill and D.A. Eisner. Local activation of contraction in isolated rat ventricular myocytes. Am. J. Physiol. 258: C1165–C1168, 1990b.Google Scholar
  182. Orchard, C.H. The role of the sarcoplasmic reticulum in the response of ferret and rat heart muscle to acidosis. J. Physiol. 384: 431–449, 1987.PubMedGoogle Scholar
  183. Orchard, C.H. and J.C. Kentish. Effects of changes of pH on the contractile function of cardiac muscle. Am. J. Physiol. 258: C967–C981, 1990.Google Scholar
  184. Orchard, C.H., D.A. Eisner and D.G. Allen. Oscillations of intracellular Ca2+ in mammalian cardiac muscle. Nature 304: 735–738, 1983.Google Scholar
  185. Otani, H., H. Otani and D.K. Das. a1-Adrenoreceptor-mediated phosphoinositide breakdown and inotropic response in rat left ventricular papillary muscles. Circ. Res. 62: 8–17, 1988.PubMedGoogle Scholar
  186. Page, E. and M. Surdyk-Droske. Distribution, surface density, and membrane area of diadic junctional contacts between plasma membrane and terminal cisterns in mammalian ventricle. Circ. Res. 45: 260–267, 1979.PubMedGoogle Scholar
  187. Philipson, K.D. Interaction of charged amphiphiles with Na+-Ca2+ exchange in cardiac sarcolemmal vesicles. J. Biol. Chem. 259: 13999–14002, 1984.PubMedGoogle Scholar
  188. Philipson, K.D. Symmetry properties of the Na-Ca exchange mechanism in cardiac sarcolemmal vesicles. Biochim. Biophys. Acta 821: 367–376, 1985a.Google Scholar
  189. Philipson, K.D. Sodium-calcium exchange in plasma membrane vesicles. Ann. Rev. Physiol. 47: 561–571, 1985b.Google Scholar
  190. Philipson, K.D. The cardiac Na+-Ca2+ exchanger. In: Calcium and the Heart G.A. Langer, ed., Raven Press, New York, pp. 85–108, 1990.Google Scholar
  191. Philipson, K.D. and A.Y. Nishimoto. Na+-Ca2+ Exchange is affected by membrane potential in cardiac sarcolemmal vesicles. J. Biol. Chem. 255: 6880–6882, 1980.PubMedGoogle Scholar
  192. Philipson, K.D. and A.Y. Nishimoto. Efflux of Ca2+ from cardiac sarcolemmal vesicles. Influence of external Ca2+ and Na+. J. Biol. Chem 256: 3698–3702, 1981.PubMedGoogle Scholar
  193. Philipson, K.D. and A.Y. Nishimoto. Na+-Ca2+ exchange in inside-out cardiac sarcolemmal vesicles. J. Biol. Chem. 257: 5111–5117, 1982a.PubMedGoogle Scholar
  194. Philipson, K.D. and A.Y. Nishimoto. Stimulation of Na+-Ca2+ exchange in cardiac sarcolemmal vesicles by proteinase pretreatment. Am. J. Physiol. 243: C191–C195, 1982b.PubMedGoogle Scholar
  195. Philipson, K.D. and A.Y. Nishimoto. Stimulation of Na+-Ca2+ exchange in cardiac sarcolemmal vesicles by phospholipase D. J. Biol. Chem. 259: 16–19, 1984.PubMedGoogle Scholar
  196. Philipson, K.D. and R. Ward. Effects of fatty acids on Nat-Ca2+ exchange and Ca2+ permeability of cardiac sarcolemmal vesicles. J. Biol. Chem. 260: 9666–9671, 1985.PubMedGoogle Scholar
  197. Philipson, K.D. and R. Ward. Ca2+ transport capacity of sarcolemmal Na+-Ca2+ exchange. Extrapolation of vesicle data to in vivo conditions. J. Mol. Cell. Cardiol. 18: 943–951, 1986.PubMedGoogle Scholar
  198. Philipson, K.D. and R. Ward. Modulation of Na+-Ca2 exchange and Ca2+ permeability in cardiac sarcolemmal vesicles by doxylstearic acids. Biochim. Biophys. Acta 897: 152–158, 1987.Google Scholar
  199. Philipson, K.D., M.M. Bersohn and A.Y. Nishimoto. Effects of pH on Na+-Ca2+ exchange in canine cardiac sarcolemmal vesicles. Circ. Res. 50: 287–293, 1982.PubMedGoogle Scholar
  200. Philipson, K.D., J.S. Frank and A.Y. Nishimoto. Effects of phospholipase Con the Na+-Ca2+ exchange and Ca2+ permeability of cardiac sarcolemmal vesicles. J. Biol. Chem. 258: 5905–5910, 1983.PubMedGoogle Scholar
  201. Philipson, K.D., G.A. Langer and T.L. Rich. Charged amphiphiles regulate heart contractility and sarcolemmaCa2+ interactions. Am. J. Physiol. 248: H147–H150, 1985.PubMedGoogle Scholar
  202. Philipson, K.D., S. Longoni and R. Ward. Purification of the cardiac Na-Ca exchange protein. Biochim. Biophys. Acta 945: 298–306, 1988.Google Scholar
  203. Pierce, G.N., T.L. Rich and G.Â. Langer. Trans-sarcolemmal Ca2+ movements associated with contraction of the rabbit right ventricular wall. Circ. Res. 61: 805–814, 1987.PubMedGoogle Scholar
  204. Piwnica-Worms, D., R. Jacob, C.R. Hones and M. Lieberman. Na+-H+ exchange in cultured chick heart cells. J. Gen. Physiol. 85: 43–64, 1985.Google Scholar
  205. Pizarró, G., R. Fitts, I. Uribe and E. Rios. The voltage sensor of excitation-contraction coupling in skeletal muscle. J. Gen. Physiol. 94: 405–428, 1989.PubMedGoogle Scholar
  206. Pytkowski, B., B. Lewartowski, A. Prokopczuk, K. Zdanowski and K. Lewandowska. Excitation-and rate-dependent shifts of Ca in guinea-pig ventricular myocardium. Pflügers Arch. 398: 103–113, 1983.Google Scholar
  207. Raffaeli, S., M.C. Capogrossi, H.A. Spurgeon, M.D. Stern and E.G. Lakatta. Isoproterenol abolishes negative staircase of Ca2+ transient and twitch in single rat cardiac myocytes. Circulation 76: IV–212, 1987.Google Scholar
  208. Ravens, U., X.-L. Wang and E. Wettwer. Alpha adrenoceptor stimulation reduces outward currents in rat ventricular myocytes. J. Pharmacol. Exp. Ther. 250: 364–370, 1989.Google Scholar
  209. Reiter, M. Calcium mobilization and cardiac inotropic mechanisms. Pharmacol. Rev. 40: 189–217, 1988.Google Scholar
  210. Reuben, J.P., P.W. Brandt, M. Berman and H. Grundfest. Regulation of tension in the skinned crayfish muscle fiber. J. Gen. Physiol. 57: 385–407, 1971.Google Scholar
  211. Reuter, H. and Scholz, H. The regulation of the Ca conductance of cardiac muscle by adrenaline. J. Physiol. 264: 49–62, 1977.PubMedGoogle Scholar
  212. Ringer, S. A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J. Physiol. 4: 29–42, 1883.PubMedGoogle Scholar
  213. Robertson, S.P., J.D. Johnson and J.D. Potter. The time-course of Ca2+ exchange with calmodulin, troponin, parvalbumin, and myosin in response to transient increases in Ca2+. Biophvs. J. 34: 559–569, 1981.Google Scholar
  214. Rolett, E.L. Adrenergic mechanisms in man., aïan myocardium. In: The Mammalian Myocardium GA. Langer and A.J. Brady, John Wiley and Fons, N.Y., pp. 219–250, 1974.Google Scholar
  215. Rosen, M.R., H. Gelband and B.F. Hoffman. Correlation between effects of ouabain on the canine electrocardiogram and transmembrane potentials of isolated Purkinje fibres. Circulation 47: 65–72, 1973.Google Scholar
  216. Rosen, M.R., H. Gelband, C. Merker and B.F. Hoffman. Mechanism of digitalis toxicity: Effects of ouabain on phase four of canine Purkinje fiber transmembrane potentials. Circulation 47: 681–689, 1973.PubMedGoogle Scholar
  217. Rousseau, E. and J. Pinkos. pH modulates conducting and gating behaviour of single calcium release channels. Pflügers Arch. 415: 645–647, 1990.Google Scholar
  218. Rüegg, J.C. and I Morano. Calcium-sensitivity modulation of cardiac myofibrillar proteins. J. Cardiovasc. Pharmacol. 14: S20–S23, 1989.Google Scholar
  219. Rüegg, J.C., S. Brewer, C. Zeugner and I.P. Trayer. Peptides from the myosin heavy chain are calcium sensitizers of skinned skeletal muscle fibres. J. Muscle Res. Cell Mot. 10: 152, 1989.Google Scholar
  220. Sato, R., A. Noma, Y. Kurachi and H. Irisawa. Effects of intracellular acidification on membrane currents in ventricular cells of the guinea-pig. Circ. Res. 57: 553–561, 1985.Google Scholar
  221. Schnetkamp, P.P.M., D.K. Basu and R.T. Szerencsei. Naz+-Caz+ exchange in bovine rod outer segments requires and transports K. Am. J. Physiol. 257: C153–C157, 1989.PubMedGoogle Scholar
  222. Schouten, VJA., J.K. van Deen, P. de Tombe and AA. Verveen. Force-interval relationship in heart muscle of mammals. A calcium compartment model. Biophvs. J. 51: 13–26, 1987.Google Scholar
  223. Schramm, M., G. Thomas, R. Towart and G. Franckowiak. Novel dihydropyridines with positive inotropic action through activation of Ca channel. Nature 303: 535–537, 1983.Google Scholar
  224. Schouten, JA. and H.E.D.J. ter Keurs. The slow repolarization of the action potential in rat heart. J. Phvsiol. 360: 13–26, 1985.Google Scholar
  225. Schumann, HJ. and O.E. Brodde. Demonstration of alpha-adrenoceptors in the rabbit heart by [3H]dihydroergocryptine binding. Naunvn Schmiedeberg’s Arch. Pharmacol. 308: 191–198, 1979.Google Scholar
  226. Schumann, H.J., M. Endoh and J. Wagner. Positive inotropic effects of phenylephrine in the isolated rabbit papillary muscle mediated both by alpha-and beta-adrenoceptors. Arch. Pharmacol. 284: 133–148, 1974.Google Scholar
  227. Schumann, H.J., M. Endoh and O.E. Brodde. The time course of the effects of ß-and a-adrenoceptor stimulation by isoprenaline and methoxamine on the contractile force and cAMP level of the isolated rabbit papillary muscle. Arch. Pharmacol. 289: 291–302, 1975.Google Scholar
  228. Shattock, M.J. Studies on the isolated papillary muscle preparation with particular emphasis on the effects of hypothermia. Ph.D. thesis. University of London, 1984.Google Scholar
  229. Shattock, Mi. and D.M. Bers. The inotropic response to hypothermia and the temperature-dependence of ryanodine action in isolated rabbit and rat ventricular muscle: Implications for E-C coupling. Circ. Res. 61: 761–771, 1987.PubMedGoogle Scholar
  230. Shattock, M.J. and D.M. Bers. Rat vs. rabbit ventricle: Ca flux and intracellular Na assessed by ion-selective microelectrodes. Am. J. Physiol. 256: C813–C822, 1989.PubMedGoogle Scholar
  231. Shattock, M.J. and D.M. Bers. Rat vs. rabbit ventricle: Ca flux and intracellular Na assessed by ion-selective microelectrodes. Am. J. Physiol. 256: C813–C822, 1989.PubMedGoogle Scholar
  232. Sheu, S.-S. and H.A. Fozzard. Transmembrane Na and Ca electrochemical gradients in cardiac muscle and their relation to force development. J. Gen. Physiol. 80: 325–351, 1982.Google Scholar
  233. Shigekawa, M., J.-A.M. Finegan and A.M. Katz. Calcium transport ATPase of canine cardiac sarcoplasmic reticulum. J. Biol. Chem. 251: 6894–6900, 1976.Google Scholar
  234. Siegl, P.K.S., M.L. Garcia, V.F. King, A.L. Scott, G. Morgan and GJ. Kaczorowski. Interactions of DPI 201–106, a novel cardiotonic agent, with cardiac calcium channels. Arch. Pharmacol. 338: 684–691, 1988.Google Scholar
  235. Simmerman, H.K.B., J.H. Collins, J.L. Theiber, A.D. Wegener and L.R. Jones. Sequence analysis of phospholamban. J. Biol. Chem. 261: 13333–13341, 1986.Google Scholar
  236. Simpson, P.C., R,G. Cuenco, M.O. Paningbatan and M.D. Murphy. An al-receptor subtype sensitive to WB-4101 transduces cardiac myocyte growth. Circulation 82: III–561, 1990.Google Scholar
  237. Sitsapesan, R., RAP. Montgomery, K.T. MacLeod and A.J. Williams. Temperature modulation of the cardiac sarcoplasmic reticulum calcium-release channel. Biophys. J. 57: 278, 1990.Google Scholar
  238. Sjöstrand, F.S., E. Andersson-Cedergren and M.M. Dewey. The ultrastructure of the intercalated disc of frog, mouse and guinea pig cardiac muscle. J. Ultrastruct. Res. 1: 271–287, 1958.PubMedGoogle Scholar
  239. Slaughter, R.S., J.L. Sutko and J.P. Reeves. Equilibrium calcium-calcium exchange in cardiac sarcolemmal vesicles. J. Biol. Chem. 258: 3183–3190, 1983.Google Scholar
  240. Smith, S.J. and P.J. England. The effects of reported Z;1+ sensitisers on the rates of Ca2+ release from cardiac troponin C and the troponin-tropomyosin complex. Br. J. Pharmacol. 100: 779–785, 1990.PubMedGoogle Scholar
  241. Solaro, R.J. and J.C. Rüegg. Stimulation of Cat+ binding and ATPase activity of dog cardiac myofibrils by AR-L115 BS, a novel cardiotonic agent, Circ. Res. 51: 290–294, 1982.[2,9]Google Scholar
  242. Solaro, RJ., R.M. Wise, J.S. Shiner and F.N. Briggs. Calcium requirements for cardiac myofibrillar activation. Circ. Res. 34: 525–530, 1974.Google Scholar
  243. Solaro, R.J., A.J.G. Moir and S.V. Perry. Phosphorylation of a troponin I and the inotropic effect of adenaline in perfused rabbit heart. Nature 262: 615–617, 1976.PubMedGoogle Scholar
  244. Solaro, RJ., P. Kumar, E.M. Blanchard and A.F. Martin. Differential effects of pH on calcium activation of myofilaments of adult and perinatal dog hearts. Circ. Res. 58: 721–729, 1986.PubMedGoogle Scholar
  245. Solaro, Ri., S.T. Rapundalo, J.L. Garvey and E.G. Kranas. Mechanics of cardiac contraction and the phosphorylation of sarcotubular and myofilament proteins. In: Mechanics of the Circulation H.E.D.J. ter Keurs, and J.V. Tyberg, Martinus Nijhoff Publishers, pp. 135–152, 1987.Google Scholar
  246. Solaro, RJ., J.A. Lee, J.C. Kentish, and D.G. Allen. Effects of acidosis on ventricular muscle from adult and neonatal rats. Circ. Res. 63: 779–787, 1988.PubMedGoogle Scholar
  247. Solaro, R.J., S.C. El-Saleh and J.C. Kentish. Ca2t+, pH and the regulation of cardiac myofilament force and ATPase activity. Mol. Cell. Biochem. 89: 163–167, 1989.PubMedGoogle Scholar
  248. Spray, D.C. and J.M. Burt. Structure-activity relations of the cardiac gap junction channel. Am. J. Phvsiol. 258: C195–C205, 1990.Google Scholar
  249. Spurgeon, HA., M.D. Stern, G. Baartz, S Raffaeli, R.G. Hansford, A Talo, E.G. Lakatta and M.C. Capogrossi. Simultaneous measurement of Ca2+, contraction and potential in cardiac myocytes. Am. J. Physiol. 258: H574–H586, 1990.PubMedGoogle Scholar
  250. Stern, M.D., M.C. Capogrossi and E.G. Lakatta. Propagated contractile waves in single cardiac myocytes modeled as regenerative calcium induced calcium release from the sarcoplasmic reticulum. Biophys. J. 45: 94a, 1984.Google Scholar
  251. Stern, M.D., M.C. Capogrossi and E.G. Lakatta. Spontaneous calcium release from the sarcoplasmic reticulum in myocardial cells: Mechanisms and consequences. Cell Calcium 9: 247–256, 1988.Google Scholar
  252. Stiles, G.L., S. Taylor and R.J. Lefkowitz. Human cardiac beta-adrenergic receptors: Subtype heterogeneity delineated by direct radioligand binding. Life Sci. 33: 467–473, 1983.PubMedGoogle Scholar
  253. Streissnig, J., F. Scheffauer, J. Mitterdorfer, M. Schirmer and H. Glossmann. Identification of the benzothiazepine-binding polypeptide of skeletal muscle calcium channels with (+)-cis-azidodiltiazem and anti-ligand antibodies. J. Biol. Chem. 265: 363–370, 1990.Google Scholar
  254. Sumbera J., V. Kreta and P. Braveny. Influence of a rapid change of temperature on the mechanical response of mammalian myocardium. Arch. Int. Phvsiol. Biochem. 74: 627–641, 1966.Google Scholar
  255. Takamatsu, T. and W.G. Wier. Calcium waves in mammalian heart: Quantification of origin, magnitude, waveform, and velocity. FASEB J. 4: 1519–1525, 1990.PubMedGoogle Scholar
  256. Takeshima, H., S. Hishimura T. Matsumoto, H. Ishida, K. Kangawa, N. Minamino, H. Matsuo, M. Ueda, M. Hanaoka, T. Hirose, and S. Numa. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339: 439–445, 1989.PubMedGoogle Scholar
  257. Tani M. Mechanisms of Cat+ overload in reperfused ischemic myocardium. Ann. Rev. Physiol. 52: 543–549, 1990.Google Scholar
  258. Toshe, N., Y. Hattori, H. Nakaya and M. Kanno. Effects of cs-adrenoceptor stimulation on electrophysiological properties and mechanics in rat papillary muscle. Gen. Pharmacol. 18: 539–546, 1987.Google Scholar
  259. Tsien, R.W., W. Giles and P. Greengard. Cyclic AMP mediates the action of adrenaline on the action potential plateau of cardiac Purkinje fibres. Nature 140: 181–183, 1972.Google Scholar
  260. Vassort, G. Influence of sodium ions on the regulation of frog myocardiac contractility. Pflügers Arch. 339: 225246, 1973.Google Scholar
  261. Vaughan-Jones, R.D. Chloride-bicarbonate exchange in the sheep cardiac purkinje fiber. In: Intracellular pH, Its Measurement, Regulation and Utilization in Cellular Functions. Alan R. Liss, Inc., New York, pp. 239–252, 1982.Google Scholar
  262. Vaughan-Jones, R.D., W.J. Lederer and DA. Eisner. Ca2+ ions can affect intracellular pH in mammalian cardiac muscle. Nature 301: 522–524, 1983.Google Scholar
  263. von der Leyen, H., H. Colberg, W. Meyer, H. Scholz and H. Wenzlaff. Phosphodiesterase III inhibition by new cardiotonic agents in failing human heart. Arch. Pharmacol. 338: R40, 1988.Google Scholar
  264. Wasserstrom, J.A., D.J. Schwartz and H.A. Fozzard. Catecholamine effects on intracellular sodium activity and tension in dog heart. Am. J. Physiol. 243: H670–H675, 1982.PubMedGoogle Scholar
  265. Wasserstrom, JA., D.J. Schwartz and HA. Fozzard. Relation between intracellular sodium and twitch tension in sheep cardiac Purkinje strands exposed to cardiac glycosides. Circ. Res. 52: 697–705, 1983.PubMedGoogle Scholar
  266. Watanabe, A.M., L.R. Jones, A.S. Manalan and H.R. Besch Jr. Cardiac autonomic receptors: Recent concepts from radiolabelled ligand studies. Circ. Res. 50: 161–174, 1982.PubMedGoogle Scholar
  267. Weingart, R. The actions of ouabain on intercellular coupling and conduction velocity in mammalian ventricular muscle. J. Physiol. 264: 341–365, 1977.PubMedGoogle Scholar
  268. Weingart, R. and P. Hess. Free calcium in sheep cardiac tissue and frog skeletal muscle measured with Cat+-selective microelectrodes. Pflugers Arch. 402: 1–9, 1984.Google Scholar
  269. Weingart, R., R.S. Kass and R.W. Tsien. Is digitalis inotropy associated with enhanced slow inward current? Nature 273: 389–392, 1978.Google Scholar
  270. Weishaar, R.E., D.C. Kobylarz-Singer, M.M. Quade, R.P. Steffen and H.R. Kaplan. Role of cyclic AMP in regulating cardiac muscle contractility: Novel pharmacological approaches to modulating cyclic AMP degradation by phosphodiesterase. Drug Develop. Res. 12: 119–129, 1988.Google Scholar
  271. Weiss, J.N. and S.T. Lamp. Glycolysis preferentially inhibits ATP-sensitive K+ channels in isolated guinea pig cardiac myocytes. Science 238: 67–69, 1987.Google Scholar
  272. Weiss, J.N. and S.T. Lamp. Cardiac ATP-sensitive K+ channels. J. Gen. Physiol. 94: 911–935, 1989.PubMedGoogle Scholar
  273. Wier, W.G. and P. Hess. Excitation-contraction coupling in cardiac Purkinje Fibers. Effects of cardiotonic steroids on the intracellular [Ca2+] transient, membrane potential, and contraction. J. Gen. Physiol. 83: 395–415, 1984.Google Scholar
  274. Wier, W.G., AA. Kort, M.D. Stern, E.G. Lakatta and E. Marban. Cellular calcium fluctuations in mammalian heart: Direct evidence from noise analysis of aequorin signals and Purkinje fibers. Proc. Natl. Acad. Sgj. USA 80: 7367–7371, 1983.Google Scholar
  275. Wier, W.G., M.B. Cannell, J.R. Berlin, E. Marban and W.J. Lederer. Cellular and subcellular heterogeneity of [Ca2+]i in single heart cells revealed by Fura-2. Science 235: 325–328, 1987.Google Scholar
  276. Williams, R.S. and R.J. Lefkowitz. Alpha-adrenergic receptors in rat myocardium. Identification by binding of [3H]dihydroergocryptine, Circ. Res. 43: 721–727, 1978.Google Scholar
  277. Williams, J.S., I.L. Grupp, G. Grupp, P.L. Vaghy, L. Dumont and A. Schwartz. Profile of the oppositely acting enantiomers of the dihydropyridine 202–791 in cardiac preparations: Receptor binding, electrophysiological, and pharmacological studies. Biochem. Biophys. Res. Commun. 131: 13–21, 1985.Google Scholar
  278. Withering, W. An account of the foxglove, and some of its medicinal uses: With practical remarks on dropsy and other diseases. London: G.G.J. and J. Robinson, 1785.Google Scholar
  279. Wohlfart, B. Relationship between peak force, action potential duration and stimulus interval in rabbit myocardium. Acta Physiol. Scand. 106: 395–409, 1979.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Donald M. Bers
    • 1
  1. 1.Department of PhysiologyLoyola University Medical SchoolMaywoodUSA

Personalised recommendations