Skip to main content

Control of Cardiac Contraction by SR Ca Release and Sarcolemmal Ca Fluxes

  • Chapter
Book cover Excitation-Contraction Coupling and Cardiac Contractile Force

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 122))

Abstract

In the preceding chapters the importance of both Ca current and SR Ca release in E-C coupling have been discussed and it was suggested that Ca from both sources could contribute to the activation of contraction. A major goal of this chapter is to clarify how these two sources of Ca may differ in particular cardiac muscle preparations and under different experimental situations. I will also discuss how the transsarcolemmal Ca fluxes and the SR Ca fluxes interact in a simple framework of overall Ca regulation in cardiac muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong, C.M. Sodium channels and gating currents. Physiol. Rev. 61: 644–683, 1981.

    CAS  Google Scholar 

  • Baylor, S.M., and W.K. Chandler. Optical indications of excitation-contraction coupling in striated muscle. In Biophysical Aspects of Cardiac Muscle M. Morad, ed., Academic Press, New York, pp. 207–228, 1978.

    Google Scholar 

  • Bers, D.M. Early transient depletion of extracellular [Ca] during individual cardiac muscle contractions. Am. J. Physiol. 244: H462–H468, 1983.

    Google Scholar 

  • Bers, D.M. Ca influx and sarcoplasmic reticulum Ca release in cardiac muscle activation during post-rest recovery. Am. J. Physiol. 248: H366–H381, 1985.

    CAS  Google Scholar 

  • Bers, D.M. Mechanisms contributing to the cardiac inotropic effect of Na-pump inhibition and reduction of extracellular Na. J. Gen. Physiol. 90: 479–504, 1987b.

    Google Scholar 

  • Bers, D.M. SR Ca loading in cardiac muscle preparations based on rapid cooling contractures. Am. J. Physiol. 256: C109–C120, 1989.

    Google Scholar 

  • Bers, D.M. and J.H.B. Bridge. The effect of acetylstrophanthidin on twitches, microscopic tension fluctuations and cooling contractures in rabbit ventricular muscle. J. Physiol. 404: 53–69, 1988.

    PubMed  CAS  Google Scholar 

  • Bers, D.M. and D.M. Christensen. Functional interconversion of rest decay and ryanodine effects in rabbit or rat ventricle depends on Na/Ca exchange. J. Mol. Cell. Cardiol. 22: 715–523, 1990.

    PubMed  CAS  Google Scholar 

  • Bers, D.M. and K.T. MacLeod. Cumulative extracellular Ca depletions in rabbit ventricular muscle monitored with Ca selective microelectrodes. Circ. Res. 58: 769–782, 1986.

    CAS  Google Scholar 

  • Bers, D.M., W.J. Lederer and J.R. Berlin. Intracellular Ca transients in rat cardiac myocytes: Role of Na/Ca exchange in excitation-contraction coupling. Am. J. Physiol. 258: C944–C954, 1990.

    CAS  Google Scholar 

  • Bers, D.M., L.V. Hryshko, S.M. Harrison and D.D. Dawson. Citrate decreases contraction and Ca current in cardiac muscle independent of its buffering action. Amer. J. Physiol. 260: C900–C909, 1991.

    PubMed  CAS  Google Scholar 

  • Beyer, T., N. Gansohr, P. Gjorstrup and U. Ravens. The effects of the cardiotonic dihydropyridine derivatives Bay k 8644 and H160/51 on post-rest adaptation of guinea-pig papillary muscles. Arch. Pharmacol. 334: 488–495, 1986.

    CAS  Google Scholar 

  • Blinks, J.R. and M. Endoh. Modification of myofibrillar responsiveness to Ca++ as an inotropic mechanism. Circulation 73: III–85, 1986.

    Google Scholar 

  • Blinks, J.R. and J. Koch-Weser. Physical factors in the analysis of the actions of drugs on myocardial contractility. Pharmacol. Rev. 15: 531–599, 1963.

    CAS  Google Scholar 

  • Blinks, J.R., C.B. Olson, B.R. Jewell and P. Braveny. Influence of caffeine and other methylxanthines on mechanical properties of isolated mammalian heart muscle. Evidence for a dual mechanism of action. Circ. Res. 30: 367–392, 1972.

    PubMed  CAS  Google Scholar 

  • Bogdanov, K.Y., S.I. Zakharov and L.V. Rosenshtraukh. The origin of two components in contraction of guinea pig papillary muscle in the presence of noradrenaline. Can. J. Physiol. Pharmacol. 57: 866–872, 1979.

    PubMed  CAS  Google Scholar 

  • Bouchard, R.A. and D. Bose. Analysis of the interval-force relationship in rat and canine ventricular myocardium. Am. J. Physiol. 257: H2036–H2047, 1989.

    PubMed  CAS  Google Scholar 

  • Bowditch, H.P. Uber die Eigenthumlichkeiten der reizbarkeit, welche die muskelfasern des herzens zeigen. Ber. Sachs. Ges. Wiss. 23: 652–689, 1871.

    Google Scholar 

  • Boyett, M.R. and B.R. Jewell. A study of the factors responsible for rate-dependent shortening of the action potential in mammalian ventricular muscle. J. Physiol. 285: 359–380, 1978.

    PubMed  CAS  Google Scholar 

  • Boyett, M.R. and B.R. Jewell. Analysis of the effects of changes in rate and rhythm upon electrical activity of the heart. Prog. Biophys. Molec. Biol. 36: 1–52, 1980.

    Google Scholar 

  • Boyett, M.R., G. Hart, A.J. Levi and A. Roberts. Effects of repetitive activity on developed force and intracellular sodium in isolated sheep and dog Purkinje fibres. J. Physiol. 388: 295–322, 1987.[8]

    Google Scholar 

  • Braveny, P. and V. Kruta. Dissociation de deux facteurs: Restitution et potentiation dans l’action de l’intervalle sur l’amplitude de la contraction du myocarde. Arch. Int. Physiol. Biochim. 66: 633–652, 1958.

    PubMed  CAS  Google Scholar 

  • Braveny, P. and J. Sumbera. Electromechanical correlations in the mammalian heart muscle. Pflügers Arch. 319: 36–48, 1970.

    CAS  Google Scholar 

  • Bridge, J.H.B. Relationships between the sarcoplasmic reticulum and transarcolemmal Ca transport revealed by rapidly cooling rabbit ventricular muscle. J. Gen. Physiol. 88: 437–473, 1986.

    Google Scholar 

  • Buxton, I.L.O. and L.L Brunton. Action of the cardiac ctl -adrenergic receptor activation of cyclic AMP degradation. J. Biol. Chem. 26: 6733–6737, 1985.

    Google Scholar 

  • Cannell, M.B., R.D. Vaughan-Jones and W.J. Lederer. Ryanodine block of calcium oscillations in heart muscle and the sodium-tension relationship. Fed. Proc. 44: 2964–2969, 1985.

    PubMed  CAS  Google Scholar 

  • Chapman, R.A. Control of cardiac contractility at the cellular level. Am. J. Physiol. 245: H535–H552, 1983.

    Google Scholar 

  • Chapman, R.A. and J. Tunstall. The tension-depolarization relationship of frog atrial trabeculae as determined by potassium contractures. J. Physiol. 310: 97–115, 1981.

    PubMed  CAS  Google Scholar 

  • Cohen, C.J., H.A. Fozzard and S.-S. Sheu. Increase in intracellular sodium ion activity during stimulation in mammalian cardiac muscle. Cire. Res. 50: 651–662, 1982.

    CAS  Google Scholar 

  • Cooper, I.C. and C.H. Fry. Mechanical restitution in isolated mammalian myocardium: Species differences and underlying mechanisms. J. Mol. Cell. Cardiol. 22: 439–452, 1990.

    CAS  Google Scholar 

  • Coraboeuf, E. Membrane electrical activity and double component contraction in cardiac tissue. J. Mol. Cell. Cardiol. 6: 215–22. 5, 1974.

    Google Scholar 

  • duBell, W.H., and S.R. Houser. A comparison of cytosolic free Ca2+ in resting feline and rat ventricular myocytes. Cell. Calcium 8: 259–268, 1987.

    PubMed  CAS  Google Scholar 

  • Edman, K.A.P. and M. Jóhannsson. The contractile state of rabbit papillary muscle in relation to stimulation frequency. J. Physiol. 254: 565–581, 1976.

    PubMed  CAS  Google Scholar 

  • Eisner, D.A., W.J. Lederer and R.D. Vaughan-Jones. The control of tonic tension by membrane potential and intracellular sodium activity in the sheep cardiac Purkinje fibre. J. Physiol. 335: 723–743, 1983.

    PubMed  CAS  Google Scholar 

  • El-Sayed, M.F. and H. Gesser. Sarcoplasmic reticulum, potassium, and cardiac force in rainbow trout and plaice. Am. J. Physiol. 257: R599–R604, 1989.

    PubMed  CAS  Google Scholar 

  • Ellis, D. Effects of stimulation and diphenylhydantoin on the intracellular sodium activity in Purkinje fibres of sheep heart. J. Physiol. 362: 331–348, 1985.

    PubMed  CAS  Google Scholar 

  • Endoh, M., T. Iijima and S. Motomura. Inhibition by theophylline of the early component of canine ventricular contraction. Am. J. Physiol. 11: H349–H358, 1982.

    Google Scholar 

  • Fabiato, A. Calcium release in skinned cardiac cells: Variations with species, tissues, and development. Fed. Proc. 41: 2238–2244, 1982.

    Google Scholar 

  • Fabiato, A. Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J. Gen. Physiol. 85: 247–290, 1985b.

    CAS  Google Scholar 

  • Fabiato, A. and F. Fabiato. Calcium induced release of calcium from the sarcoplasmic reticulum and skinned cells from adult human, dog, cat, rabbit, rat and frog hearts and from fetal and newborn rat ventricles. Ann. N.Y. Arad. Sci. 307: 491–522, 1978b.

    CAS  Google Scholar 

  • Fedida, D., D. Noble, Y. Shimoni and A.J. Spindler. Inward current related to contraction in guinea-pig ventricular myocytes. J. Physiol. 385: 565–589, 1987a.

    PubMed  CAS  Google Scholar 

  • Fischmeister, R. and Hartzell, H.C. Mechanism of action of acetylcholine on calcium current in single cells from frog ventricle. J. Physiol. 376: 183–202, 1986.

    PubMed  CAS  Google Scholar 

  • Forester, G.V. and G.W. Mainwood. Interval dependent inotropic effects in the rat myocardium and the effect of calcium. Pflügers Arch. 352: 189–1%, 1974.

    Google Scholar 

  • Gibbons, W.R. and H.A. Fozzard. Slow inward current and contraction of sheep cardiac Purkinje fibers. J. Gen. Physiol. 65: 367–384, 1975.

    Google Scholar 

  • Goto, M., Y. Kimoto and Y. Kato. A study on the excitation-contraction coupling of the bullfrog ventricle with voltage clamp technique. Jap. J. Physiol. 21: 159–173, 1971.

    CAS  Google Scholar 

  • Gould, R.J., K.M.M. Murphy, I.J. Reynolds and S.H. Snyder. Antischizophrenic drugs of the diphenylbutylpiperidine type act as calcium channel agonists. Proc. Natl. Acad. Sci. USA 80: 5122–5125, 1983.

    CAS  Google Scholar 

  • Grahame, D.C. The electrical double layer and the theory of electrocapillarity. Chem. Rev. 41: 441–501, 1947.

    PubMed  CAS  Google Scholar 

  • Green, F.J., B.B. Farmer, G.L. Wiseman, M.J.L. Jose and A.M. Watanabe. Effect of membrane depolarization on binding of [3H]nitrendipine to rat cardiac myocytes. Circ. Res. 56: 576–585, 1985.

    PubMed  CAS  Google Scholar 

  • Green, W.N., L.B. Weiss and O.S. Andersen. Batrachotoxin-modified sodium channels in planar lipid bilayers. Ion permeation and block. J. Gen. Physiol. 89: 841–872, 1987.

    PubMed  CAS  Google Scholar 

  • Gurney, A.M., P. Charnet, J.M. Pye and J. Nargeot. Augmentation of cardiac calcium current by flash photolysis of intracellular caged-Ca2+ molecules. Nature 341: 65–68, 1989.

    CAS  Google Scholar 

  • Hadley, R.W. and J.R. Hume. An intrinsic potential-dependent inactivation mechanism associated with calcium channels in guinea-pig myocytes. J. Physiol. 389: 205–222, 1987.

    PubMed  CAS  Google Scholar 

  • Hadley, R.W. and W.J. Lederer. Intramembrane charge movement in guinea-pig and rat ventricular myocytes. J. Physiol. 415: 601–624, 1989.

    CAS  Google Scholar 

  • Hagiwara, N., H. Irisawa and M Kameyama. Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. J. Physiol. 359: 233–253, 1988.

    Google Scholar 

  • Hagiwara, S., J. Fukuda and D.C. Eaton. Membrane currents carried by Ca, Sr, and Ba in barnacle muscle fiber during voltage clamp. J. Gen. Physiol. 63: 564–578, 1974.

    PubMed  CAS  Google Scholar 

  • Hagiwara, S., S. Ozawa and O. Sand. Voltage clamp analysis of two inward current mechanisms in the egg cell membrane of a starfish. J. Gen. Physiol. 65: 617–644, 1975.

    CAS  Google Scholar 

  • Hajdu, S., and E. Leonard. Action of ryanodine on mammalian cardiac muscle. Effects on contractility, and reversal of digitalis-induced ventricular arrhythmias. Circ. Res. 9: 1291–1283, 1961.

    CAS  Google Scholar 

  • Henry, P.D. Positive staircase effect in the rat heart. Am. J. Physiol. 228: 360–364, 1975.

    Google Scholar 

  • Hilgemann, D.W. Extracellular calcium transients and action potential configuration changes related to post-stimulatory potentiation in rabbit atrium. J. Gen. Physiol. 87: 675–706, 1986a.

    CAS  Google Scholar 

  • Hilgemann, D.W. Extracellular calcium transients at single excitations in rabbit atrium measured with tetramethylmurexide. J. Gen. Physiol. 87: 707–735, 1986b.

    Google Scholar 

  • Hilgemann, D.W. and GA. Langer. Transsarcolemmal calcium movements in arterially perfused rabbit right ventricle measured with extracellular calcium-sensitive dyes. Circ. Res. 54: 461–467, 1984.

    CAS  Google Scholar 

  • Hilgemann, D.W. and D. Noble. Excitation-contraction coupling and extracellular calcium transients in rabbit atrium: Reconstruction of basic cellular mechanisms. Phil. Trans. Roy. Soc. London 230: 163–205, 1986.

    Google Scholar 

  • Hilgemann, D.W., M.J. Delay and G.A. Langer. Activation-dependent cumulative depletions of extracellular free calcium in guinea pig atrium measured with antipyrylazo III and tetramethylmurexide. Circ. Res. 53: 779793, 1983.

    Google Scholar 

  • Hilkert, R.J., N.F. Zaidi, C.F. Lagenaur and G. Salama. Immunoaffinity purified 106-kDa protein from sarcoplasmic reticulum (SR) is a Ca2+ release channel modulated by agents that alter Ca2+ release. Biophys. J. 57: 275a, 1990.

    Google Scholar 

  • Hoerter, J., F. Mazet and G. Vassort. Perinatal growth of the rabbit cardiac cell: Possible implications for the mechanism of relaxation. J. Mol. Cell. Cardiol. 13: 725–740, 1981.

    CAS  Google Scholar 

  • Hoffman, B.F., E. Bindler and E.E. Suckling. Postextrasystolic potentiation of contraction in cardiac muscle. Am. J. Physiol. 185: 95–102, 1956.

    CAS  Google Scholar 

  • Honore, E., C.E. Challice, P. Guilbault and B. Dupuis. Two components of contraction in guinea pig papillary muscle. Can. J. Physiol. Pharmacol. 64: 1153–1159, 1986.

    CAS  Google Scholar 

  • Honore, E., M.M. Adamantidis, B.A. Dupuis, C.E. Challice and P. Guilbault. Calcium channels and excitation-contraction coupling in cardiac cells. I. Two components of contraction in guinea-pig papillary muscle. Can. J. Physiol. Pharmacol. 65: 1821–1831, 1987.

    CAS  Google Scholar 

  • Horackova, M. and G. Vassort. Calcium conductance in relation to contractility in frog myocardium. J. Physiol. 259: 597–616, 1976.

    PubMed  CAS  Google Scholar 

  • Horackova, M. and G. Vassort. Sodium-calcium exchange in regulation of cardiac contractility. Evidence for an electrogenic, voltage-dependent mechanism. J. Gen. Physiol. 73: 403–424, 1979.

    CAS  Google Scholar 

  • Hryshko, L.V., T. Kobayashi and D. Bose. Possible inhibition of canine ventricular sarcoplasmic reticulum by BAY K 8644. Am. J. Physiol. 257: H407–H414, 1989b.

    CAS  Google Scholar 

  • Hryshko, L.V., V.M. Stiffel, and D.M. Bers Rapid cooling contractures as an index of SR Ca content in rabbit ventricular myocyte. Am. J. Physiol. 257: H1369–H1377, 1989e.

    CAS  Google Scholar 

  • Isenberg, G. and U. Klöckner. Calcium currents of isolated bovine ventricular myocytes are fast and of large amplitude. Pflügers Arch. 395: 30–41, 1982.

    CAS  Google Scholar 

  • Isenberg, G. and M.F. Wendt-Gallitelli. Cellular mechanisms of excitation contraction coupling. In: Isolated Adult Cardiomyocytes Volume II, H.M. Piper and G. Isenberg, CRC Press, Inc., Boca Raton, Florida, pp. 213–248, 1989.

    Google Scholar 

  • January, C.T. and H.A. Fozzard. The effects of membrane potential, extracellular potassium, and tetrodotoxin on the intracellular sodium ion activity of sheep cardiac muscle. Circ. Res. 54: 652–665, 1984.

    PubMed  CAS  Google Scholar 

  • Johnson, EA. Force-interval relationship of cardiac muscle. In: Handbook of Physiology Section 2. L.D. Peachey, ed., Am. Physiol Soc., Bethesda, MD. 475–495, 1983.

    Google Scholar 

  • Kaczorowski, G.J., F. Barros, J.K. Dethmers, M.J. Trumble and E.J. Cragoe. Inhibition of sodium-calcium exchange in pituitary plasma membrane vesicles by analogs of amiloride. Biochemistry 24: 1394–1403, 1986.

    Google Scholar 

  • Kass, R.S. and M.C. Sanguinetti. Inactivation of calcium channel current in the calf cardiac Purkinje fiber. Evidence for voltage-and calcium-mediated mechanisms. J. Gen. Physiol. 84: 705–726, 1984.

    CAS  Google Scholar 

  • Kim, K.C., A.H. Caswell, J.A. Talvenheimo and N.R. Brandt. Isolation of a terminal cisterna protein which may link the dihydropyridine receptor to the junctional foot protein in skeletal muscle. Biochemistry 29: 92819289, 1990.

    Google Scholar 

  • King, B.W. and D. Bose. Mechanism of biphasic contractions in strontium-treated ventricular muscle. Circ. Res. 52: 65–75, 1983.

    CAS  Google Scholar 

  • Koch-Weser, J. and J.R. Blinks. The influence of the interval between beats on myocardial contractility. Pharmacol. Rev. 15: 601–652, 1963.

    CAS  Google Scholar 

  • Kondo, N. Excitation-contraction coupling in myocardium of nonhibernating and hibernating chipmunks: Effects of isoprenaline, a high calcium medium, and ryanodine. Circ. Res. 59: 221–228, 1986.

    Google Scholar 

  • Kondo, N. Comparison between effects of caffeine and ryanodine on electromechanical coupling in myocardium of hibernating chipmunks: Role of internal Ca stores. Br. J. Pharmacol. 95: 1287–1291, 1988.

    Google Scholar 

  • Kranias, E.G. and R.J. Solaro. Phosphorylation of troponin I and phospholamban during catecholamine stimulation of rabbit heart. Nature 298: 182–184, 1982.

    CAS  Google Scholar 

  • Lee, K.S., E. Marban and R.W. Tsien. Inactivation of calcium channels in mammalian heart cells: Joint dependence on membrane potential and intracellular calcium. J. Physiol. 364: 395–411, 1985.

    CAS  Google Scholar 

  • Legato, M. Cellular mechanisms of normal growth in the mammalian heart. II. A quantitative and qualitative comparison between the right and left ventricular myocytes in the dog from birth to five months of age. Circ. Res. 44: 263–279, 1979.

    Google Scholar 

  • Le Grand, B., E. Deroubaix, A. Coulombe and E. Coraboeuf. Stimulatory effect of ouabain on T- and L-type calcium currents in guinea pig cardiac myocytes. Am. J. Physiol. 258: H1620–H1623, 1990.

    PubMed  Google Scholar 

  • LePeuch, C.J., D.A.M. LePeuch and J.G. Demaille. Phospholamban activation of the cardiac sarcoplasmic reticulum calcium pump. Physicochemical properties and diagonal purification. Biochemistry 19: 3368–3373, 1980.

    PubMed  Google Scholar 

  • Lewartowski, B., B. Pytkowski and A. Janczewski. Calcium fraction correlating with contractile force of ventricular muscle of guinea-pig heart. Pflügers Arch. 401: 198–203, 1984.

    CAS  Google Scholar 

  • Lewartowski, B., R.G. Hansford, G.A. Langer and E.G. Lakatta. Contraction and sarcoplasmic reticulum Ca2+ content in single myocytes of guinea pig heart: Effect of ryanodine. Am. J. Physiol. 259: H1222–H1229, 1990.

    PubMed  CAS  Google Scholar 

  • Li, J. and J. Kimura. Translocation mechanism of Na-Ca exchange in single cardiac cells of guinea pig. J. Gen. Physiol. 96: 777–788, 1990.

    CAS  Google Scholar 

  • Lindemann, J.P. and A.M. Watanabe. Muscarinic cholinergie inhibition of beta-adrenergic stimulation of phospholamban phosphorylation and Ca2+ transport in guinea pig ventricles. J. Biol. Chem. 260: 1312213129, 1985.

    Google Scholar 

  • Lipsius, S.L., HA. Fozzard and W.R. Gibbons. Voltage and time dependence of restitution in heart. Am. J. Physiol. 243: H68–H76, 1982.

    PubMed  CAS  Google Scholar 

  • MacLeod, K.T. and D.M. Bers. The effects of rest duration and ryanodine on extracellular calcium concentration in cardiac muscle from rabbits. Am. J. Physiol. 253: C398–C407, 1987.

    PubMed  CAS  Google Scholar 

  • Mahony, L. and L.R. Jones. Developmental changes in cardiac sarcoplasmic reticulum in sheep. J. Biol. Chem. 261: 15257–15265, 1986.

    Google Scholar 

  • Malécot, C.O., D.M. Bers and B.G. Katzung. Biphasic contractions induced by milrinone at low temperature in ferret ventricular muscle: Role of the sarcoplasmic reticulum and transmembrane Ca influx. Circ. Res. 59: 151–162, 1986.

    Google Scholar 

  • Maylie, J.G. Excitation-contraction coupling in neonatal and adult myocardium of cat. Am. J. Physiol. 242: H834–H843, 1982.

    Google Scholar 

  • Morad, M. and L. Cleeman. Role of Ca2+ channel in development of tension in heart muscle. J. Mol. Cell. Cardiol. 19: 527–553, 1987.

    PubMed  CAS  Google Scholar 

  • Morad, M. and W. Trautwein. The effect of the duration of the action potential on contraction in the mammalian heart muscle. Pflüeers Arch. 299: 66–82, 1968.

    CAS  Google Scholar 

  • Morad, M. and Y. Goldman. Excitation-contraction coupling in heart muscle: Membrane control of development of tension. Prog. Biophys. Molec. Biol. 27:257–313, 1973.

    Google Scholar 

  • Nakanishi, T. and J.M. Jarmakani. Developmental changes in myocardial mechanical function and subcellular organelles. Am. J. Physiol. 246: H615–H625, 1984.

    CAS  Google Scholar 

  • Nayler, W.G. and E. Fassold. Calcium accumulation and ATPase activity of cardiac sarcoplasmic reticulum before and after birth. Cardiovasc. Res. 11: 231–237, 1977.

    CAS  Google Scholar 

  • Olivetti, G., P. Anversa and A. Loud. Morphometric study of early postnatal development in the left and right ventricular myocardium of the rat. II. Tissue composition, capillary growth, and sarcoplasmic alterations. Circ. Res. 46: 503–512, 1980.

    PubMed  CAS  Google Scholar 

  • Page, E. and J.L. Buecker. Development of dyadic junctional complexes between sarcoplasmic reticulum and plasmalemma in rabbit left ventricular myocardial cells. Cire. Res. 48: 519–522, 1981.

    CAS  Google Scholar 

  • Pegg, W. and M. Michalak. Differentiation of sarcoplasmic reticulum during cardiac myogenesis. Am. J. Physiol. 21: H22–H31, 1987.

    Google Scholar 

  • Penefsky, Z.J. Studies on the mechanism of inhibition of cardiac muscle contractile tension by ryanodine. Pflügers Arch. 347: 173–184, 1974.

    CAS  Google Scholar 

  • Penefsky, Z.J. Perinatal development of cardiac mechanisms. In: Perinatal Cardiovascular Function N. Gootman and P.M. Gootman, pp. 109–200, 1983.

    Google Scholar 

  • Pierce, G.N., T.L. Rich and G.Â. Langer. Trans-sarcolemmal Ca2+ movements associated with contraction of the rabbit right ventricular wall. Circ. Res. 61: 805–814, 1987.

    PubMed  CAS  Google Scholar 

  • Pizarró, G., R. Fitts, I. Uribe and E. Rios. The voltage sensor of excitation-contraction coupling in skeletal muscle. J. Gen. Physiol. 94: 405–428, 1989.

    PubMed  Google Scholar 

  • Prod’hom, B., D. Pietrobon and P. Hess. Direct measurement of proton transfer rates to a group controlling the dihydropyridine-sensitive Ca2+ channel. Nature 329: 243–246, 1987.

    Google Scholar 

  • Pytkowski, B. Rest-and stimulation-dependent changes in exchangeable calcium content in rabbit ventricular myocardium. Bas. Res. Cardiol. 84: 22–29, 1989.

    CAS  Google Scholar 

  • Pytkowski, B., B. Lewartowski, A. Prokopczuk, K. Zdanowski and K. Lewandowska. Excitation-and rate-dependent shifts of Ca in guinea-pig ventricular myocardium. Pflügers Arch. 398: 103–113, 1983.

    CAS  Google Scholar 

  • Raffaeli, S., M.C. Capogrossi, H.A. Spurgeon, M.D. Stern and E.G. Lakatta. Isoproterenol abolishes negative staircase of Ca2+ transient and twitch in single rat cardiac myocytes. Circulation 76: IV–212, 1987.

    Google Scholar 

  • Ragnarsdottir, K., B. Wohlfart and M. Johannsson. Mechanical restitution of the rat papillary muscle. Acta Physiol. Scand. 115: 183–191, 1982.

    PubMed  CAS  Google Scholar 

  • Rapundalo, S.T., I. Grupp, G. Grupp, MA. Matlib, R.J. Solaro and A. Schwartz. Myocardial actions of milrinone: Characterization of its mechanism of action. Circulation 73: 134–144, 1986.

    Google Scholar 

  • Reiter, M., W. Vierling and K. Seibel. Excitation-contraction coupling in rested-state contractions of guinea-pig ventricular myocardium. Arch. Pharmacol. 325: 159–169, 1984.

    CAS  Google Scholar 

  • Repke, K. Uber den biochemischen Wirkungsmodus von Digitalis. Klin Wochenschrift. 42: 157–165, 1964.

    CAS  Google Scholar 

  • Schneider, M.F., and W.K. Chandler. Voltage dependence charge movement in skeletal muscle: A possible step in excitation-contraction coupling. Nature 242: 244–246, 1973.

    PubMed  CAS  Google Scholar 

  • Schouten, VJA., J.K. van Deen, P. de Tombe and AA. Verveen. Force-interval relationship in heart muscle of mammals. A calcium compartment model. Biophvs. J. 51: 13–26, 1987.

    CAS  Google Scholar 

  • Seguchi, M., JA. Harding and J.M. Jarmakani. Developmental change in the function of sarcoplasmic reticulum. J. Mol. Cell. Cardiol. 18: 189–195, 1986.

    CAS  Google Scholar 

  • Seibel, K. The slow phase of the staircase in guinea-pig papillary muscle, influence of agents acting on transmembrane sodium flux. Arch. Pharmacol. 334: 92–99, 1986.

    CAS  Google Scholar 

  • Seibel, K., E. Karema, K. Takeya and M. Reiter. Effect of noradrenaline on an early and a late component of the myocardial contraction. Arch. Pharmacol. 305: 65–74, 1978.

    CAS  Google Scholar 

  • Shattock, Mi. and D.M. Bers. The inotropic response to hypothermia and the temperature-dependence of ryanodine action in isolated rabbit and rat ventricular muscle: Implications for E-C coupling. Circ. Res. 61: 761–771, 1987.

    PubMed  CAS  Google Scholar 

  • Shattock, M.J. and D.M. Bers. Rat vs. rabbit ventricle: Ca flux and intracellular Na assessed by ion-selective microelectrodes. Am. J. Physiol. 256: C813–C822, 1989.

    PubMed  CAS  Google Scholar 

  • Spurgeon, HA., G. Isenberg, A. Talo, M.D. Stern, M.C. Capogrossi and E.G. Lakatta. Negative staircase in cytosolic Ca2+ in rat myocytes is modulated by depolarization duration. Biophys. J. 53: 601a, 1988.

    Google Scholar 

  • Sutko, J.L. and J.L. Kenyon. Ryanodine modification of cardiac muscle responses to potassium free solutions. Evidence for inhibition of sarcoplasmic reticulum calcium release. J. Gen. Physiol. 82: 385–404, 1983.

    CAS  Google Scholar 

  • Sutko, J.L. and J.T. Willerson. Ryanodine alteration of the contractile state of rat ventricular myocardium. Comparison with dog, cat and rabbit ventricular tissues. Circ. Res. 46: 332–343, 1980.

    PubMed  CAS  Google Scholar 

  • Sutko, J.L., K. Ito and J.L. Kenyon. Ryanodine: A modifier of sarcoplasmic reticulum calcium release. Biochemical and functional consequences of its actions on striated muscle. Fed. Proc. 44: 2984–2988, 1985.

    PubMed  CAS  Google Scholar 

  • Sutko, J.L., D.M. Bers and J.P. Reeves. Postrest inotropy in rabbit ventricle: Na+-Ca2+ exchange determines sarcoplasmic reticulum Ca2+ content. Am. J. Physiol. 250: H654–H661, 1986.

    CAS  Google Scholar 

  • Tsien, R.W. Adrenaline-like effects of intracellular iontophoresis of cyclic AMP in cardiac Purkinje fibres. Nature New Biol. 245: 120–122, 1973.

    CAS  Google Scholar 

  • Wegener, A.D., H.K.B. Simmerman, J.P. Lindemann and L.R. Jones. Phospholamban phosphorylation in intact ventricles. Phosphorylation of serine 16 and threonine 17 in response to ß-adrenergic stimulation. J. Biol. Chem. 264: 11468–11474, 1989.

    PubMed  CAS  Google Scholar 

  • Weiss, J., G.S. Couper, B. Hiltbrand and K.I. Shine. Role of acidosis in early contractile dysfunction during ischemia: Evidence from pH, measurements. Am. J. Physiol. 247: H760–H767, 1984.

    CAS  Google Scholar 

  • Wendt, I.R. and D.G. Stephenson. Effects of caffeine on Ca-activated force production in skinned cardiac and skeletal muscle fibres of the rat. Pflügers Arch. 398: 210–216, 1983.

    CAS  Google Scholar 

  • Wier, W.G. and D.T. Yue. Intracellular calcium transients underlying the short-term force-interval relationship in ferret ventricular myocardium. J. Physiol. 376: 507–530, 1986.

    CAS  Google Scholar 

  • Wohlfart, B. and M.I.M. Noble. The cardiac excitation-contraction cycle. Pharmacol. Ther. 16: 1–43, 1982. Wood, E.H., R.L. Heppner and S. Weidman. Inotropic effects of electric currents. Circ. Res. 24: 409–445, 1969.

    Google Scholar 

  • Woodworth, R.S. Maximal contraction, “staircase” contraction, refractory period, and compensatory pause, of the heart. Am. J. Physiol. 8: 213–249, 1902.

    Google Scholar 

  • Worley, P.F., J.M. Baraban, S. Surachai, V.S.Wilson and S.H. Snyder. Characterization of inositol trisphosphate receptor binding in brain. J. Biol. Chem. 262: 12132–12136, 1987.

    PubMed  CAS  Google Scholar 

  • Yamamoto, H. and C. van Breemen. Inositol 1,4,5-trisphosphate releases calcium from skinned cultured smooth muscle cells. Biochem. Biophys. Res. Commun. 130: 270–274, 1985.

    CAS  Google Scholar 

  • Yue, D.T., Burkhoff, D., Franz, M.R., Hunter, W.C. and Sagawa, K. Postextrasystolic potentiation of the isolated canine left ventricle. Circ. Res. 56: 340–350, 1985.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bers, D.M. (1993). Control of Cardiac Contraction by SR Ca Release and Sarcolemmal Ca Fluxes. In: Excitation-Contraction Coupling and Cardiac Contractile Force. Developments in Cardiovascular Medicine, vol 122. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1512-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1512-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-2479-9

  • Online ISBN: 978-94-017-1512-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics