Advertisement

Excitation-Contraction Coupling

  • Donald M. Bers
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 122)

Abstract

Since the classic experiments of Ringer (1883) demonstrated that the frog heart would not contract in the absence of extracellular Ca, it has been clear that Cao is critical in muscle contraction. This has been confirmed repeatedly and some modern day extensions of this fundamental observation are illustrated in Figs. 55 and 56. Figure 55A shows that when Cao is removed quickly from the medium around a rat ventricular myocyte contractions are immediately abolished (in < 1 sec, Rich et al, 1988). In contrast, Figure 55B shows that skeletal muscle can contract for many minutes in the complete absence of extracellular Ca (Armstrong et al, 1972). Figure 56 shows the voltage dependence of several parameters during voltage-clamp experiments with isolated guinea-pig myocytes. The Em-dependence of contraction (shortening) and the Cai transient are very similar to the Em-dependence of ICa in guinea-pig and other cardiac preparations (McDonald et al., 1975; London & Krueger, 1986; Cannell et al., 1987; Beuckelmann & Wier, 1988; Callewaert et al., 1988; duBell & Houser, 1989). This is also true for the Em-dependence of an intrinsic birefringence signal in cardiac muscle thought to be associated with SR Ca release (Maylie & Morad, 1984). This bell shaped Em-dependence is strikingly different than the sigmoid Em-dependence of the intramembrane charge movement in heart (Field et al., 1988; Bean & Ríos, 1989; Hadley & Lederer, 1989) that is thought to be involved in skeletal muscle E-C coupling (Schneider & Chandler, 1973).

Keywords

Cardiac Muscle Ryanodine Receptor Charge Movement Dihydropyridine Receptor Intramembrane Charge Movement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramson, J.T. Regulation of the sarcoplasmic reticulum calcium permeability by sulfhydryl oxidation and reduction. J. Memb. Sci. 33: 241–248, 1987.CrossRefGoogle Scholar
  2. Abramson, J.J., J.L. Trimm, L. Weden and G. Salama. Heavy metals induce rapid calcium release from sarcoplasmic reticulum vesicles isolated from skeletal muscle. Proc. Natl. Asad. Sci. USA 80: 1526–1530, 1983.Google Scholar
  3. Adams, B.A. and K.G. Beam. Muscular dysgenesis in mice: A model system for studying excitation-contraction coupling. FASEB J. 4: 2809–2816, 1990.PubMedGoogle Scholar
  4. Adams, B.A., T. Tanabe, A. Mikami, S. Numa and K.G. Beam. Intramembrane charge movement restored in dysgenic skeletal muscle by injection of dihydropyridine receptor cDNAs. Nature 346: 569–172, 1990.Google Scholar
  5. Adams, S.R., J.P.Y. Kao, G. Grynkiewicz, A. Minta and R.Y. Tsien. Biologically useful chelators that release Cat+ upon illumination. J. Am. Chem. Soc. 110: 3212–3220, 1988.CrossRefGoogle Scholar
  6. Akera, T., R.T. Bennet, M.K. Olgaard and T.M. Brody. Cardiac Nat, K+ -adenosine triphosphate inhibition by ouabain and myocardial sodium: A computer simulation. J. Pharmacol. Exp. Ther. 199: 287–297, 1976.Google Scholar
  7. Allen, D.G., DA. Eisner and C.H. Orchard. Characterization of oscillations of intracellular calcium concentration in ferret ventricular muscle. J. Physiol. 352: 113–128, 1984b.PubMedGoogle Scholar
  8. Allen, D.G., D.A. Eisner, J.S. Pirolo and G.L. Smith. The relationship between intracellular calcium and contraction in calcium-overloaded ferret papillary muscles. J. Physiol. 364: 169–182, 1985b.PubMedGoogle Scholar
  9. Antoniu, B., D.H. Kim, M. Morii and N. Ikemoto. Inhibitors of Ca release from the isolated sarcoplasmic reticulum. I. Ca channel blockers. Biochim. Biophys. Acta 816: 9–17, 1985.Google Scholar
  10. Argibay, J.A., R. Fischmeister, and H.0 Hartzell. Inactivation, reactivation and pacing dependence of calcium current in frog cardiocytes: Correlation with current density. J. Physiol 401: 201–226, 1988.PubMedGoogle Scholar
  11. Babu, A., E. Sonnenblick, and J. Gulati. Molecular basis for the influence of muscle length on myocardial performance. Science 240: 74–76, 1988.Google Scholar
  12. Backx, P.H., P.P. de Tombe, J.H.K. Van Deen, B.J. Mulder and H.E.D.J. ter Keurs. 1989. A model of propagating calcium-induced calcium release mediated by calcium diffusion. J. Gen. Physiol. 93: 963–977, 1989.Google Scholar
  13. Banijamali, H.S., W.D. Gao and H.E.D. J. ter Keurs. Induction of calcium leak from the sarcoplasmic reticulum of rat cardiac trebeculae by ryanodine. Circulation 82: III–215, 1990.Google Scholar
  14. Baylor, S.M., and W.K. Chandler. Optical indications of excitation-contraction coupling in striated muscle. In Biophysical Aspects of Cardiac Muscle M. Morad, ed., Academic Press, New York, pp. 207–228, 1978.Google Scholar
  15. Beam, K.G. and B.A. Adams. Reduced intramembrane charge movement in dysgenic skeletal muscle myotubes. Biophys. J. 57: 177a, 1990.Google Scholar
  16. Beam, K.G., C.M. Knudson and J.A. Powell. A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells. Nature 320: 168–170, 1986.Google Scholar
  17. Bean, B.P. and E. Rios. Nonlinear charge movement in mammalian cardiac ventricular cells. J. Gen. Physiol. 94: 65–93, 1989.Google Scholar
  18. Berridge, M.J. Inositol triphosphate and diacylglycerol: Two interacting second messengers. Ann. Rev. Biochem. 56: 159–193, 1987.PubMedCrossRefGoogle Scholar
  19. Berridge, M.J. and A. Galione. Cytosolic calcium oscillators. FASEB J. 2: 3074–3082, 1988.Google Scholar
  20. Berridge, M.J. and R.F. Irvine. Inositol phosphates and cell signalling. Nature 341: 197–205, 1989.Google Scholar
  21. Bers, D.M. and J.H.B. Bridge. The effect of acetylstrophanthidin on twitches, microscopic tension fluctuations and cooling contractures in rabbit ventricular muscle. J. Physiol. 404: 53–69, 1988.PubMedGoogle Scholar
  22. Bers, D.M. and D.M. Christensen. Functional interconversion of rest decay and ryanodine effects in rabbit or rat ventricle depends on Na/Ca exchange. J. Mol. Cell. Cardiol. 22: 715–523, 1990.PubMedGoogle Scholar
  23. Bers, D.M. and A. Peskoff. Diffusion around a cardiac calcium channel and the role of surface bound calcium. Biophys. J. 59: 703–721, 1991.Google Scholar
  24. Bers, D.M., LA. Allen and Y. Kim. Calcium binding to cardiac sarcolemma isolated from rabbit ventricular muscle: Its possible role in modifying contractile force. Am. J. Physiol. 251: C861–C871, 1986.Google Scholar
  25. Bers, D.M., J.H.B. Bridge and K.T. MacLeod. The mechanism of ryanodine action in cardiac muscle assessed with Ca selective microelectrodes and rapid cooling contractures. Can. J. Physiol. Pharmacol. 65: 610–618, 1987.PubMedCrossRefGoogle Scholar
  26. Bers, D.M., D.M. Christensen and T.X. Nguyen. Can Ca entry via Na-Ca exchange directly activate cardiac muscle contraction ? J. Mol. Cell. Cardiol. 20: 405–414, 1988.PubMedCrossRefGoogle Scholar
  27. Bers, D.M., W.J. Lederer and J.R. Berlin. Intracellular Ca transients in rat cardiac myocytes: Role of Na/Ca exchange in excitation-contraction coupling. Am. J. Physiol. 258: C944–C954, 1990.Google Scholar
  28. Beuckelmann, D.J. and W.G. Wier. Mechanism of release of calcium from sarcoplasmic reticulum of guinea pig cardiac cells. J. Physiol. 405: 233–255, 1988.PubMedGoogle Scholar
  29. Blinks, J.R., Y.-D. Cai and N.K.M. Lee. Inositol 1,4,5-trisphosphate causes calcium release in frog skeletal muscle only when transverse tubules have been interrupted. J. Physiol. 394: 23P, 1987.Google Scholar
  30. Block, B.A., T. Imagawa, K.P. Campbell and C. Franzini-Armstrong. Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J. Cell Biol. 107: 2587–2600, 1988.PubMedCrossRefGoogle Scholar
  31. Brandt, N.R., A.N. Caswell, S.-R. Wen and J.A. Talvenheimo. Molecular interactions of the junctional foot protein and dihydropyridine receptor in skeletal muscle triads. J. Membr. Biol. 113: 237–251, 1990.PubMedCrossRefGoogle Scholar
  32. Brown, J.H. and L.G. Jones. Phosphoinositide metabolism in the heart. In: Phosphoinositides and Receptor Mechanisms. Putney, J.W. Jr., ed. Alan R. Liss, pp. 245–270, 1986.Google Scholar
  33. Bruckner, R. and H. Scholz. Effects of alpha-adrenoceptor stimulation with phenylephrine in the presence of propranolol on force of contraction, slow inward current and cyclic AMP content in the bovine heart. Br. J. Pharmacol. 82: 223–232, 1984.PubMedCrossRefGoogle Scholar
  34. Brum, G., E. Ríos and E. Stefani. Effects of extracellular calcium on calcium movements of excitation-contraction coupling in frog skeletal muscle fibres. J. Physiol. 398: 441–473, 1988a.PubMedGoogle Scholar
  35. Brum, G., R. Fitts, G. Pizarró and E. Ríos. Voltage sensors of the frog skeletal muscle membrane require calcium to function in excitation-contraction coupling. J. Physiol. 398: 475–505, 1988b.PubMedGoogle Scholar
  36. Caillé, J., M. Ildefonse and O. Rougier. Evidence of an action of sodium ions in the activation of contraction of twitch muscle fibre. Pflügers Arch. 379: 117–119, 1979.Google Scholar
  37. Caillé, J., M. Ildefonse and O. Rougier. Excitation-contraction coupling in skeletal muscle. Prog. Biophvs. Molec. Biol. 46: 185–239, 1985.Google Scholar
  38. Callewaert, G., L. Cleemann and M. Morad. Epinephrine enhances Ca2+ current-regulated Ca2+ release and Ca2+ reuptake in rat ventricular myocytes. Proc. Natl. Arad. Sci. USA 85: 2009–2013, 1988.CrossRefGoogle Scholar
  39. Cannell, M.B., DA. Eisner, W.J. Lederer and M. Valdeolmillos. Effects of membrane potential on intracellular calcium concentration in sheep Purkinje fibres in sodium-free solutions. J. Physiol. 381: 193–203, 1986.PubMedGoogle Scholar
  40. Cannell, M.B., J.R. Berlin and W.J. Lederer. Effect of membrane potential changes on the calcium transient in single rat cardiac muscle cells. Science 238: 1419–1423, 1987.Google Scholar
  41. Capogrossi, M.C. and E.G. Lakatta. Intracellular calcium and activation of contraction as studied by optical techniques. In: Isolated Adult Cardiomyocytes H.M. Piper and G. Isenberg, CRC Press, pp. 183–212, 1990.Google Scholar
  42. Capogrossi, M.C., A.A. Kort, H.A. Spurgeon and E.G. Lakatta. Single adult rabbit and rat cardiac myocytes retain the Ca2+ and species-dependent systolic and diastolic contractile properties of intact muscle. J. Gen. Physiol. 88: 589–613, 1986a.PubMedCrossRefGoogle Scholar
  43. Capogrossi,M.C., B.A. Suarez-Isla and E.G. Lakatta. The interaction of electrically stimulated twitches and spontaneous contractile waves in single cardiac myocytes. J. Gen. Physiol. 88: 615–633, 1986b.Google Scholar
  44. Capogrossi, M.C., S. Houser, A. Bahinski and E.G. Lakatta. Synchronous occurrence of spontaneous localized calcium release from the sarcoplasmic reticulum generates action potentials in rat cardiac ventricular myocytes at normal resting membrane potential. Cire. Res. 61: 498–503, 1987.Google Scholar
  45. Capogrossi, M.C., M.D. Stern, H.A. Spurgeon and E.G. Lakatta. Spontaneous Ca2+ release from the sarcoplasmic reticulum limits Ca2+-dependent twitch potentiation in individual cardiac myocytes. J. Gen. Physiol. 91: 133–155, 1988.PubMedCrossRefGoogle Scholar
  46. Caputo, C., F. Benzanilla and P. Horowicz. Depolarization-contraction coupling in short frog muscle fibers. J. Gen. Physiol. 84: 133–154, 1984.Google Scholar
  47. Carsten, M. and J. Miller. Ca2+ release by inositol trisphosphate from Ca2+-transporting microsomes derived from uterine sarcoplasmic reticulum. Biochem. Biophvs. Res. Commun. 130: 1027–1031, 1985.Google Scholar
  48. Caswell, A.H. and A.M. Corbett. Interaction of glyceraldehyde-3-phosphate dehydrogenase with isolated muscle subfractions of skeletal muscle. J. Biol. Chem. 269: 6892–6898, 1985.Google Scholar
  49. Caswell, A.H., Y.H. Lau, M. Garcia and J.-P. Brunschwig. Recognition and junction formation by isolated transverse tubules and terminal cisternae of skeletal muscle. J. Biol. Chem. 254: 202–208, 1979.PubMedGoogle Scholar
  50. Chadwick, C.C., M. Inui and S. Fleischer. Identification and purification of a transverse tubule coupling protein which binds to the ryanodine receptor of terminal cisternae at the triad junction in skeletal muscle. J. Biol. Chem. 236: 10872–10877, 1988.Google Scholar
  51. Chandler, W.K., R.F. Rakowski, and M.F. Schneider. A non-linear voltage dependent charge movement in frog skeletal muscle. J. Physiol. 254: 245–283, 1976a.PubMedGoogle Scholar
  52. Chandler, W.K., R.F. Rakowski, and M.F. Schneider. Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle. J. Physiol. 254: 285–316, 1976b.PubMedGoogle Scholar
  53. Cleemann, L. and M. Morad. Analysis of role of Cal+ in cardiac excitation-contraction coupling: Evidence from simultaneous measurements of intracellular Ca2+ contraction and Ca2+ current. J. Physiol. 432: 283–312, 1991.Google Scholar
  54. Cohen, N.M. and W.J. Lederer. Changes in the calcium current of rat heart ventricular myocytes during development. J. Physiol. 406: 115–146, 1988.PubMedGoogle Scholar
  55. Constantin, L.L. and R.J. Podolsky. Depolarization of the internal membrane system in the activation of frog skeletal muscle. J. Gen. Physiol. 50: 1101–1124, 1967.Google Scholar
  56. Corbett, A.M., A.H. Caswell, N.R. Brandt and J.-P. Brunschwig. Determinants of triad junction reformation: Identification and isolation of an endogenous promoter for junction reformation in muscle. J. Membr. Biol. 86: 267–276, 1985.CrossRefGoogle Scholar
  57. Crank, J. In: The Mathematics of Diffusion Second Ed. Oxford University Press, Bristol, England, 1975.Google Scholar
  58. Donaldson, S.K.B. Peeled mammalian skeletal muscle fibers. Possible stimulation of Ca2+ release via a transverse tubule-sarcoplasmic reticulum mechanism. J. Gen. Physiol. 86: 501–525, 1985.PubMedCrossRefGoogle Scholar
  59. Donaldson, S.K., N.D. Goldberg, T.F. Walserth and D.A. Huetteman. Inositol triphosphate stimulates calcium release from peeled skeletal muscle fibers. Biochim. Biophys. Acta 927: 92–99, 1987.Google Scholar
  60. Donaldson, S.K., N.D. Goldberg, T.F. Walserth and D.A. Huetteman. Voltage-dependence of inositol 1,4,5trisphosphate-induced Ca2+ release in peeled skeletal muscle fibers. Proc. Natl. Acad. Sci. USA 85: 57495753, 1988.Google Scholar
  61. Donaldson, S.K., E.M Gallant & DA. Huetteman. Skeletal muscle excitation-contraction coupling I: Transverse tubule control of peeled fiber Ca2+-induced Ca2+-release in normal and malignant hypothermic muscles. Pflügers Arch. 414: 15–23, 1989.PubMedCrossRefGoogle Scholar
  62. Ehrlich, B.E. and J. Watras. Inositol 1,4,5-triphosphate activates a channel from smooth muscle sarcoplasmic reticulum. Nature 336: 583–586, 1988.PubMedCrossRefGoogle Scholar
  63. Eisenberg, R.S., R.T. McCarthy and R.L. Milton. Paralysis of frog skeletal muscle fibres by the calcium antagonist D-600. J. Physiol. 341: 495–505, 1983.Google Scholar
  64. Eisner, D.A. and M. Valdeolmillos. A study of intracellular calcium oscillations in sheep cardiac Purkinje fibres measured at the single cell level. J. Physiol. 372: 539–556, 1986.PubMedGoogle Scholar
  65. Endo, M. Mechanism of action of caffeine on the sarcoplasmic reticulum of skeletal muscle. Proc.,j..: 479–484, 1975b.Google Scholar
  66. Endo, M. Calcium release from the sarcoplasmic reticulum. Physiol. Rev. 57: 71–108, 1977.Google Scholar
  67. Endo, M. Calcium release from sarcoplasmic reticulum. Curr. Top. Membr. Transp. 25: 181–230, 1985.Google Scholar
  68. Endo, M., M. Tanaka and Y. Ogawa. Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature 228: 34–36, 1970.Google Scholar
  69. Fabiato, A. Myoplasmic free calcium concentration reached during the twitch of an intact isolated cardiac cell and during calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned cardiac cell from the adult rat or rabbit ventricle. J. Gen. Physiol. 78: 457–497, 1981a.CrossRefGoogle Scholar
  70. Fabiato, A. Calcium release in skinned cardiac cells: Variations with species, tissues, and development. Fed. Proc. 41: 2238–2244, 1982.Google Scholar
  71. Fabiato, A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am. J. Physiol. 245: Cl-C14, 1983.Google Scholar
  72. Fabiato, A. Dependence of the Ca2+-induced release from the sarcoplasmic reticulum of skinned skeletal muscle fibres from the frog semitendinosus on the rate of change of free Ca2+ concentration at the outer surface of the sarcoplasmic reticulum. J. Physiol. 353: 56P, 1984.Google Scholar
  73. Fabiato, A. Rapid ionic modifications during the aequorin-detected calcium transient in a skinned canine cardiac Purkinje cell. J. Gen. Physiol. 85: 189–246, 1985a.CrossRefGoogle Scholar
  74. Fabiato, A. Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J. Gen. Physiol. 85: 247–290, 1985b.Google Scholar
  75. Fabiato, A. Simulated calcium current can both cause calcium loading in and trigger calcium release from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J. Gen. Physiol. 85: 291–320, 1985e.CrossRefGoogle Scholar
  76. Fabiato, A. Use of aequorin for the appraisal of the hypothesis of the release of calcium from the sarcoplasmic reticulum induced by a change of pH in skinned cardiac cells. Cell Calcium 6: 95–108, 1985e.PubMedCrossRefGoogle Scholar
  77. Fabiato, A. Appraisal of the hypothesis of the “depolarization-induced” release of calcium from the sarcoplasmic reticulum in skinned cardiac cells from the rat or pigeon ventricle. In: Structure and Function of Sarcoplasmic Reticulum. S. Fleischer and Y. Tonomura, Academic Press, Inc., pp. 479–519, 1985f.Google Scholar
  78. Fabiato, A. Ca-induced release of Ca from the sarcoplasmic reticulum of skinned fibers from the frog semitendinosus. Biophys. J. 47: 195a, 1985g.Google Scholar
  79. Fabiato, A. Inositol (1,4,5)-trisphosphate induced release of Ca2+ from the sarcoplasmic reticulum of skinned cardiac cells. Biophys. J. 49: 190a, 1986a.Google Scholar
  80. Fabiato, A. Inositol (1,4,5)-triphosphate-induced versus Ca2+-induced release of Ca2+ from the cardiac sarcoplasmic reticulum. Proc. Int. Union Physiol. Sci. 16: 350, 1986b.Google Scholar
  81. Fabiato, A. Appraisal of the hypothesis of the sodium-induced release of calcium from the sarcoplasmic reticulum or the mitochondria in skinned cardiac cells from the rat ventricle and the canine Purkinje tissue. In: Sarcoplasmic Reticulum in Muscle Physiology vol. II. M.L. Entman and W.B. Van Winkle, CRC Press, Boca Raton, Florida, pp. 51.-72, 1986e.Google Scholar
  82. Fabiato, A. Comparison and relation between inositol(1,4,5)-triphosphate-induced release and calcium-induced release of calcium from the sarcoplasmic reticulum. In: Recent Advances in Calcium Channels and Calcium Antagonists K. Yamada, S. Shibata, Pergamon Press, Inc., Elmsford, New York, pp. 35–39, 1990.Google Scholar
  83. Fabiato, A. and F. Fabiato. Excitation-contraction coupling of isolated cardiac fibers with disrupted or closed sarcolemmas. Calcium-dependent cyclic and tonic contractions. Circ. Res. 31: 293–307, 1972.PubMedGoogle Scholar
  84. Fabiato, A. and F. Fabiato. Activation of skinned cardiac cells: Subcellular effects of cardioactive drugs. Eur. J. Cardiol. 1/2: 143–155, 1973.Google Scholar
  85. Fabiato, A. and F. Fabiato. Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J. Physiol. 249: 469–495, 1975a.PubMedGoogle Scholar
  86. Fabiato, A. and F. Fabiato. Effects of magnesium on contractile activation of skinned cardiac cells. J. Physiol. 249: 497–517, 1975b.PubMedGoogle Scholar
  87. Fabiato, A. and F. Fabiato. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J. Physiol. 276: 233–255, 1978a.PubMedGoogle Scholar
  88. Fabiato, A. and F. Fabiato. Calcium induced release of calcium from the sarcoplasmic reticulum and skinned cells from adult human, dog, cat, rabbit, rat and frog hearts and from fetal and newborn rat ventricles. Ann. N.Y. Arad. Sci. 307: 491–522, 1978b.CrossRefGoogle Scholar
  89. Fabiato, A. and F. Fabiato. Use of chlorotetracycline fluorescence to demonstrate Cat+-induced release of Ca2+ from the sarcoplasmic reticulum of skinned cardiac cells. Nature 281: 146–148, 1979.Google Scholar
  90. Feher, J.J. and A. Fabiato. Cardiac sarcoplasmic reticulum: Ca uptake and release. In: Calcium and the Heart G.A. Langer, ed., Raven Press, New York, pp 199–268, 1990.Google Scholar
  91. Field, A.C., C. Hill and G.D. Lamb. Asymmetric charge movement and calcium currents in ventricular myocytes of neonatal rat. J. Physiol. 406: 277–297, 1988.PubMedGoogle Scholar
  92. Ford, L.E. and R.J. Podolsky. Regenerative calcium release within muscle cells. Science 167: 58–59, 1970.Google Scholar
  93. Frank, GB. The current view of the source of trigger calcium in excitation-contraction coupling in vertebrate skeletal muscle. Biochem. Pharmacol. 29: 2399–2406, 1980.Google Scholar
  94. Frankis, M.B., and G.E. Lindenmayer. Sodium-sensitive calcium binding to sarcolemma-enriched preparations from canine ventricles. Circ. Res. 55: 676–688, 1984.Google Scholar
  95. Gilmour, R.F. and D.P. Zipes. Positive inotropic effect of acetylcholine in canine cardiac Purkinje fibers. Am. J. Physiol. 249: H735–H740, 1985.Google Scholar
  96. Gonzalez-Serratos, H., R. Valle-Aguilera, D.A. Lathrop and M. del Carmen Garcia. Slow inward calcium currents have no obvious role in muscle excitation-contraction coupling. Nature 298: 292–294, 1982.PubMedCrossRefGoogle Scholar
  97. Gould, R.J., K.M.M. Murphy, I.J. Reynolds and S.H. Snyder. Antischizophrenic drugs of the diphenylbutylpiperidine type act as calcium channel agonists. Proc. Natl. Acad. Sci. USA 80: 5122–5125, 1983.CrossRefGoogle Scholar
  98. Grahame, D.C. The electrical double layer and the theory of electrocapillarity. Chem. Rev. 41: 441–501, 1947.PubMedCrossRefGoogle Scholar
  99. Green, F.J., B.B. Farmer, G.L. Wiseman, M.J.L. Jose and A.M. Watanabe. Effect of membrane depolarization on binding of [3H]nitrendipine to rat cardiac myocytes. Circ. Res. 56: 576–585, 1985.PubMedCrossRefGoogle Scholar
  100. Green, W.N., L.B. Weiss and O.S. Andersen. Batrachotoxin-modified sodium channels in planar lipid bilayers. Ion permeation and block. J. Gen. Physiol. 89: 841–872, 1987.PubMedCrossRefGoogle Scholar
  101. Gurney, A.M., P. Charnet, J.M. Pye and J. Nargeot. Augmentation of cardiac calcium current by flash photolysis of intracellular caged-Ca2+ molecules. Nature 341: 65–68, 1989.Google Scholar
  102. Hadley, R.W. and J.R. Hume. An intrinsic potential-dependent inactivation mechanism associated with calcium channels in guinea-pig myocytes. J. Physiol. 389: 205–222, 1987.PubMedGoogle Scholar
  103. Hadley, R.W. and W.J. Lederer. Intramembrane charge movement in guinea-pig and rat ventricular myocytes. J. Physiol. 415: 601–624, 1989.Google Scholar
  104. Hagiwara, N., H. Irisawa and M Kameyama. Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. J. Physiol. 359: 233–253, 1988.Google Scholar
  105. Hagiwara, S., J. Fukuda and D.C. Eaton. Membrane currents carried by Ca, Sr, and Ba in barnacle muscle fiber during voltage clamp. J. Gen. Physiol. 63: 564–578, 1974.PubMedCrossRefGoogle Scholar
  106. Hagiwara, S., S. Ozawa and O. Sand. Voltage clamp analysis of two inward current mechanisms in the egg cell membrane of a starfish. J. Gen. Physiol. 65: 617–644, 1975.Google Scholar
  107. Heller-Brown, J. and L.G. Jones. Phosphoinositide metabolism in the heart. In: Phosphoinositides and Receptor Mechanisms J.W. Putney Jr., ed. Allen R. Liss, New York, pp. 245–270. 1986.Google Scholar
  108. Hescheler, J., D. Pelzer, G. Trube and W. Trautwein. Does the organic calcium channel blocker D600 act from inside or outside on the cardiac cell membrane? Pflügers Arch. 393: 287–291, 1982.PubMedGoogle Scholar
  109. Hescheler, J., M. Kameyama and W. Trautwein. On the mechanism of muscarinic inhibition of the cardiac Ca current. Pflügers Arch. 407: 182–189, 1986.Google Scholar
  110. Hescheler, J., M. Kameyama, W. Trautwein, G. Mieskes and H.-D. Doling. Regulation of the cardiac calcium channel by protein phosphatases. Eur. J. Biochem. 165: 261–266, 1987a.Google Scholar
  111. Hescheler, J., M. Tang, B. Jastorff and W. Trautwein. On the mechanism of histamine induced enhancement of the cardiac Cat+ current. Pflügers Arch. 419: 23–29, 1987b.Google Scholar
  112. Hescheler, J., H. Nawrath, M. Tang and W. Trautwein. Adrenoreceptor-mediated changes of excitation and contraction in ventricular heart muscle from guinea-pigs and rabbits. J. Physiol. 397: 657–670, 1988.PubMedGoogle Scholar
  113. Hess, P. Elementary properties of cardiac calcium channels: A brief review. Can. J. Physiol. Pharmacol. 66: 1218–1223, 1988.CrossRefGoogle Scholar
  114. Hess, P. and R.W. Tsien. Mechanism of ion permeation through calcium channels. Nature 309: 453–456, 1984.Google Scholar
  115. Hess, P., J.B. Lansman and R.W. Tsien. Different modes of Ca channel gating behavior favored by dihydropyridine Ca agonists and antagonists. Nature 311: 538–544, 1984.Google Scholar
  116. Hess, P., J.B. Lansman and R.W. Tsien. Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells. J. Gen. Physiol. 88: 293319, 1986.Google Scholar
  117. Hidalgo, C. and E. Jaimovich. Inositol trisphosphate and excitation-contraction coupling in skeletal muscle. J. Bioenerg. Biomemb. 21: 267–281, 1989.Google Scholar
  118. Hidalgo, C., M.A. Carrasco, K. Magendzo and E. Jaimovich. Phosphorylation of phosphatidylinositol by transverse tubule vesicles and its possible role in excitation-contraction coupling. FEBS Lett. 202: 69–73, 1986.Google Scholar
  119. Hirata, M., E. Suematsu, T. Hashimoto, T. Hamachi and T. Koga. Release of Ca2+ from a non-mitochondrial store site in peritoneal macrophages treated with saponin by inositol 1,4,5-triphosphate. Biochem. J. 223: 229–236, 1984.PubMedGoogle Scholar
  120. Hodgkin, A.L. and P. Horowitz. Potassium contractures in single muscle fibres. J. Physiol. 153: 386–403, 1960.PubMedGoogle Scholar
  121. Hryshko, L.V., R. Bouchard, T. Chau and D. Bose. Inhibition of rest potentiation in canine ventricular muscle by BAY K 8644: Comparison with caffeine. Am. J. Physiol. 257: H399–H406, 1989a.Google Scholar
  122. Hryshko, L.V., T. Kobayashi and D. Bose. Possible inhibition of canine ventricular sarcoplasmic reticulum by BAY K 8644. Am. J. Physiol. 257: H407–H414, 1989b.Google Scholar
  123. Hryshko, L.V., V.M. Stiffel, and D.M. Bers BAY K 8644 may affect cardiac SR via direct communication between sarcolemmal and SR Ca channels. Biophys. J. 57: 167a, 1990.Google Scholar
  124. Huang, C.L.-H. Intramembrane charge movements in skeletal muscle. Physiol. Rev. 68: 1197–1247, 1988.Google Scholar
  125. Huang, C.L.-H. Voltage-dependent block of charge movement components by nifedipine in frog skeletal muscle. J. Gen. Physiol. 96: 535–557, 1990.CrossRefGoogle Scholar
  126. Huang, C.L.-H. and L.D. Peachey. The anatomic localization of charge movement components in frog skeletal muscle. J. Gen. Physiol. 96: 565–584, 1989.CrossRefGoogle Scholar
  127. Hui, C.S. Differential properties of two charge components in frog skeletal muscle. J. Physiol. 337: 531–552, 1983.PubMedGoogle Scholar
  128. Hui, C.S., R.L. Milton and R.S. Eisenberg. Charge movement in skeletal muscle fibers paralyzed by the calcium-entry blocker D600. Proc. Natl. Acad. Sci. USA 81: 2582–2585, 1984.CrossRefGoogle Scholar
  129. Hwang, K.S. and C. van Breemen. Ryanodine modulation of 45Ca efflux and tension in rabbit aortic smooth muscle. Pflügers Arch. 408: 343–350, 1987.Google Scholar
  130. Iino, M., T. Kobayashi and M. Endo. Use of ryanodine for functional removal of the calcium store in smooth muscle cells of the guinea-pig. Biochem. Biophys. Res. Commun. 152: 417–422, 1988.Google Scholar
  131. Ikemoto, N., B. Antoniu and D.H. Kim. Rapid calcium release from the isolated sarcoplasmic reticulum is triggered via the attached transverse tubular system. J. Biol. Chem. 259: 13151–13158, 1984.Google Scholar
  132. Isenberg, G., H. Spurgeon, A. Talo, M. Stern, M. Capogrossi and E. Lakatta. The voltage dependence of the myoplasmic calcium transient in guinea pig ventricular myocytes is modulated by sodium loading. In: Biology of Isolated Adult Cardiac Myocytes W.A. Clark, R.S. Decker, T.K. Bork, Elsevier, New York, pp. 354–357, 1988.Google Scholar
  133. Ito, K., S. Takakura, K. Sato and J.L. Sutko. Ryanodine inhibits the release of calcium from intracellular stores in guinea-pig aortic smooth muscle. Circ. Res. 58: 730–734, 1986.PubMedCrossRefGoogle Scholar
  134. Jones, L.G., D. Goldstein and J.H. Brown. Guanine nucleotide-dependent inositol trisphosphate formation in chick heart cells. Circ. Res. 62: 299–305, 1988.Google Scholar
  135. Jones, L.R., H.R. Besch Jr. and A.M. Watanabe. Monovalent cation stimulation of Ca2+-ATPase uptake by cardiac membrane vesicles. Correlation with stimulation of Ca2+-ATPase activity. J. Biol. Chem. 252: 3315–3323, 1977.PubMedGoogle Scholar
  136. Kamm, K.E. and J.T. Stull. Regulation of smooth muscle contractile elements by second messengers. Ann. Rev. Physiol. 51: 299–313, 1989.Google Scholar
  137. Kanmura, Y. L. Missiaen, L. Raeymaekers and R. Casteels. Ryanodine reduces the amount of calcium in intracellular stores of smooth muscle cells of the rabbit ear artery. Pflügers Arch. 413: 153–159, 1988.Google Scholar
  138. Kaplan, J.H. and G.C.R. Ellis-Davies. Photolabile chelators for the rapid photorelease of divalent cations. Proc. Natl. Acad. Sci. USA 85: 6571–6575, 1988.CrossRefGoogle Scholar
  139. Kass, R.S., W.J. Lederer, R.W. Tsien and R. Weingart. Role of calcium ions in transient inward currents and after Zcontractions induced by strophanthidin in cardiac Purkinje fibers. J. Physiol. 281: 187–208, 1978.PubMedGoogle Scholar
  140. Kentish, J.C., R.J. Barsotti, T.J. Lea, I.P. Mulligan, J.R. Patel and M.A. Ferenczi. Calcium release from cardiac sarcoplasmic reticulum induced by photorelease of calcium or Ins(1,4,5)P3. Am. J. Physiol. 258: H610–H615, 1990.PubMedGoogle Scholar
  141. Kim, K.C., A.H. Caswell, J.A. Talvenheimo and N.R. Brandt. Isolation of a terminal cisterna protein which may link the dihydropyridine receptor to the junctional foot protein in skeletal muscle. Biochemistry 29: 92819289, 1990.Google Scholar
  142. Kitada, Y., A. Narimatsu, N. Matsumura and M. Endo. Contractile proteins: Possible targets for the cardiotonic action of MCI-154, a novel cardiotonic agent ? Eur. J. Pharmacol. 134: 229–231, 1987.PubMedCrossRefGoogle Scholar
  143. Klaus, M.M., S.P. Scordilis, J.M. Rapalus, R.T. Briggs and J.A. Powell. Evidence for dysfunction in the regulation of cytosolic Ca2+ in excitation-contraction uncoupled dysgenic muscle. Dev. Biol. 99: 152–166, 1983.PubMedCrossRefGoogle Scholar
  144. Klein, M.G., B.J. Simon and M.F. Schneider. Effects of caffeine on calcium release from the sarcoplasmic reticulum in frog skeletal muscle fibres. J. Physiol. 425: 599–626, 1990.PubMedGoogle Scholar
  145. Knudson, C.M., N. Chaudhari, A.H. Sharp, J.A. Powell, K.G. Beam and K.P. Campbell. Specific absence of the alphas subunit of the dihydropyridine receptor in mice with muscular dysgenesis. J. Biol. Chem. 264: 1345 1348, 1989.Google Scholar
  146. Kobayashi, S., T. Kitazawa, A.V. Somlyo and A.P. Somlyo. Cytosolic heparin inhibits muscarinic and alphaadrenergic Cat+ release in smooth muscle: Physiological role of inositol 1,4,5’-trisphosphate-dependent, but not the independent, calcium release induced by guanine nucleotide in vascular smooth muscle. Biochem. Biophys. Res. Commun. 153: 625–631, 1988.Google Scholar
  147. Kobayashi, S., T. Kitazawa, A.V. Somlyo and A.P. Somlyo. Cytosolic heparin inhibits muscarinic and alphaadrenergic Ca2+ release in smooth muscle: Physiological role of inositol 1,4,5’-trisphosphate in pharmacomechanical coupling. J. Biol. Chem. 264: 17997–18004, 1989.PubMedGoogle Scholar
  148. Kondo, N. and S. Shibata. Calcium source for excitation-contraction coupling in myocardium of nonhibernating and hibernating chipmunks. Science 225: 641–643, 1984.Google Scholar
  149. Konishi, M., A. Olson, S. Hollingworth and S.M. Baylor. Myoplasmic binding of fura-2 investigated by steady-state fluorescence and absorbance measurements. Biophys. J. 54: 1089–1104, 1988.Google Scholar
  150. Lagos, N. and J. Vergara. Phosphoinositides in frog skeletal muscle: A quantitative analysis. Biochim. Biophys. Acta 1043: 235–244, 1990.Google Scholar
  151. Lamb, G.D. Components of charge movement in rabbit skeletal muscle: The effect of tetracaine and nifedipine. J. Physiol. 376: 85–100, 1986.Google Scholar
  152. Lamb, G.D. and T. Walsh. Calcium currents, charge movement and dihydropyridine binding in fast-and slow-twitch muscles of the rat and rabbit. J. Physiol. 393: 595–617, 1987.PubMedGoogle Scholar
  153. Lea, T.J., P.J. Griffiths, R.T. Tregear and C.C. Ashley. An examination of the ability of inositol 1,4,5-triphosphate to induce calcium release and tension development in skinned skeletal muscle fibres of frog and crustacea. FEBS Lett. 207: 153–161, 1986.PubMedCrossRefGoogle Scholar
  154. Leblanc, N. and J.R. Hume. Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science 248: 372–376, 1990.Google Scholar
  155. Liu, Q.-Y., FA. Lai, L. Xu, R.V. Jones, J.K. LaDine and G. Meissner. Comparison of the mammalian and amphibian skeletal muscle ryanodine receptor-Ca2+ release channel complexes. Biophys. J. 55: 85a, 1989.Google Scholar
  156. London, B., and J.W. Krueger. Contraction in voltage-clamped, internally perfused single heart cells. J. Gen. Physiol. 88: 475–505, 1986.Google Scholar
  157. Ma, J., M.Fill, C.M. Knudson, K.P. Campbell and R. Coronado. Ryanodine receptor of skeletal muscle is a gap junction-type channel. Science 242: 99–102, 1988.PubMedCrossRefGoogle Scholar
  158. Maylie, J., and M. Morad. A transient outward current related to calcium release and development of tension in elephant seal atrial fibres. J. Physiol. 357: 267–292, 1984.PubMedGoogle Scholar
  159. McCleskey, E.W. and W. Almers. The Ca channel in skeletal muscle is a large pore. Proc. Natl. Acad. Sci. 82: 7149–7153, 1985.PubMedCrossRefGoogle Scholar
  160. McDonald, T.F., H. Nawrath, and W. Trautwein. Membrane currents and tension in cat ventricular muscle treated with cardiac glycosides. Circ. Res. 37: 674–682, 1975.PubMedCrossRefGoogle Scholar
  161. Meissner, G. Permeability of sarcoplasmic reticulum to monovalent ions. In: Sarcoplasmic Reticulum in Muscle Physiology Vol. 1. M.L. Entman and W.B. Van Winkle, CRC Press, Inc., Boca Raton, FL, pp. 21–30, 1986b.Google Scholar
  162. Meissner, G. and J.S. Henderson. Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mgt+, adenine nucleotide, and calmodulin. J. Biol. Chem. 262: 3065–3073, 1987.PubMedGoogle Scholar
  163. Melzer, W., E. Ríos and M.F. Schneider. A general procedure for determining the rate of calcium release from the sarcoplasmic reticulum in skeletal muscle fibers. Biophys. J. 51: 849–863, 1987.Google Scholar
  164. Mikos, G.J. and T.R. Snow. Failure of inositol 1,4,5-triphosphate to elicit or potentiate Ca2+ release from isolated skeletal muscle sarcoplasmic reticulum. Biochim. Biophys. Acta 927: 256–260, 1987.Google Scholar
  165. Miledi, R., I. Parker and G. Schalow. Measurement of calcium transients in frog muscle by the use of arsenazo III. Proc. Roy. Soc. Lond. B. 198: 201–210, 1977.Google Scholar
  166. Movesian, M.A., A.P. Thomas, M. Selak and J.R. Williamson. Inositol trisphosphate does not release Ca2+ from permeabilized cardiac myocytes and sarcoplasmic reticulum. FEBS Lett. 185: 328–332, 1985.CrossRefGoogle Scholar
  167. Mulder, B.J.M., P.P. de Tombe and H.E.D.J. ter Keurs. Spontaneous and propagated contractions in rat cardiac trabeculae. J. Gen. Physiol. 93: 943-%1, 1989.Google Scholar
  168. Näbauer, M. and M. Morad. Ca2+-induced Ca2+-release as examined by photolysis of caged Ca2+ in single ventricular myocytes. Am. J. Physiol. 258: C189–C193, 1990.PubMedGoogle Scholar
  169. Näbauer, M., G. Callewart, L. Cleemann & M. Morad. Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science. 244: 800–803, 1989.PubMedCrossRefGoogle Scholar
  170. Nakajima, Y. and M. Endo. Release of calcium induced by “depolarisation” of the sarcoplasmic reticulum membrane. Nature (New Biol.) 246: 216–218, 1973.Google Scholar
  171. Nakamura, Y. and A. Schwartz. The influence of hydrogen ion concentration on calcium binding and release by skeletal muscle sarcoplasmic reticulum. J. Gen. Physiol. 59: 22–32, 1972.CrossRefGoogle Scholar
  172. Niggli, E. and W.J. Lederer. Voltage-independent calcium release in heart muscle. Science 250: 565–568, 1990.Google Scholar
  173. Nosek, T.M., M.F. Wiliams, S.T. Ziegler and R.E. Godt. Inositol trisphosphate enhances calcium release in skinned cardiac and skeletal muscle. Am. J. Physiol. 250: C807–C811, 1986.PubMedGoogle Scholar
  174. O’Neill, S.C., J.G. Mill and D.A. Eisner. Local activation of contraction in isolated rat ventricular myocytes. Am. J. Physiol. 258: C1165–C1168, 1990b.Google Scholar
  175. Orchard, C.H. and J.C. Kentish. Effects of changes of pH on the contractile function of cardiac muscle. Am. J. Physiol. 258: C967–C981, 1990.Google Scholar
  176. Orchard, C.H., D.A. Eisner and D.G. Allen. Oscillations of intracellular Ca2+ in mammalian cardiac muscle. Nature 304: 735–738, 1983.Google Scholar
  177. Otani, H., H. Otani and D.K. Das. Evidence that phosphoinositide response is mediated by a1-adrenoreceptor stimulation, but not linked with excitation-contraction coupling in cardiac muscle. Biochem. Biophys. Res. Comm. 136: 863–869, 1986.Google Scholar
  178. Otani, H., H. Otani and D.K. Das. a1-Adrenoreceptor-mediated phosphoinositide breakdown and inotropic response in rat left ventricular papillary muscles. Circ. Res. 62: 8–17, 1988.PubMedCrossRefGoogle Scholar
  179. Palade, P. Drug-induced Ca2+ release from isolated sarcoplasmic reticulum. I. Use of pyrophosphate to study caffeine-induced Ca2+ release. J. Biol. Chem. 262: 6135–6141, 1987a.Google Scholar
  180. Palade, P. Drug-induced Ca2+ release from isolated sarcoplasmic reticulum. II. Releases involving a Ca2+induced Ca2+ release channel. J. Biol. Chem. 262: 6142–6148, 1987b.PubMedGoogle Scholar
  181. Palade, P. Drug-induced Ca2+ release from isolated sarcoplasmic reticulum. III. Block of Ca2+-induced Ca2+ release by inorganic polyamines.. J. Biol. Chem. 262: 6149–6154, 1987e.PubMedGoogle Scholar
  182. Palade, P., C. Dettbarn, D. Brunder, P. Stein and G. Hals. Pharmacology of calcium release from sarcoplasmic reticulum. J. Bioenerg. Biomemb. 21: 295–320, 1989.CrossRefGoogle Scholar
  183. Palmer, R.F. and V.A. Posey. Ion effects on calcium accumulation by cardiac sarcoplasmic reticulum. J. Gen. Physiol. 50: 2085, 1967.Google Scholar
  184. Pape, P.C., M. Konishi, S.M. Baylor and A.P. Somlyo. Excitation-contraction coupling in skeletal muscle fibers injected with the InsP3 blocker, heparin. FEBS Lett. 235: 57–62, 1988.PubMedCrossRefGoogle Scholar
  185. Peachey, L.L. and K.R. Porter. Intracellular impulse conduction in muscle cells. Science 129: 721–722, 1959.Google Scholar
  186. Pinçon-Raymond, M., F. Rieger, M. Fosset and M. Lazdunski. Abnormal transverse tubule system and abnormal amount of receptors for Ca2+ channel inhibitors of the dihydropyridine family in skeletal muscle from mice with embryonic muscular dysgenesis. Dev. Biol. 112: 458–466, 1985.PubMedCrossRefGoogle Scholar
  187. Pizarró, G., L. Cleemann and M. Morad. Optical measurement of voltage-dependent Ca2+ influx in frog heart. Proc. Natl. Acad. Sci. USA 82: 1864–1868, 1985.CrossRefGoogle Scholar
  188. Pizarró, G., R. Fitts, I. Uribe and E. Rios. The voltage sensor of excitation-contraction coupling in skeletal muscle. J. Gen. Physiol. 94: 405–428, 1989.PubMedCrossRefGoogle Scholar
  189. Potter, J.D., and J.D. Johnson. Troponin. In: Calcium and Function Vol II, W. Cheung ed., Academic Press, New York, pp. 145–173, 1982.Google Scholar
  190. Pytkowski, B., B. Lewartowski, A. Prokopczuk, K. Zdanowski and K. Lewandowska. Excitation-and rate-dependent shifts of Ca in guinea-pig ventricular myocardium. Pflügers Arch. 398: 103–113, 1983.Google Scholar
  191. Raffaeli, S., M.C. Capogrossi, H.A. Spurgeon, M.D. Stern and E.G. Lakatta. Isoproterenol abolishes negative staircase of Ca2+ transient and twitch in single rat cardiac myocytes. Circulation 76: IV–212, 1987.Google Scholar
  192. Rich, T.L., G. A. Langer and M.G. Klassen. Two components of coupling calcium in single ventricular cell of rabbits and rats. Am. J. Physiol. 254: H937–H946, 1988.PubMedGoogle Scholar
  193. Ringer, S. A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J. Physiol. 4: 29–42, 1883.PubMedGoogle Scholar
  194. Ríos, E. and G. Brum. Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature 325: 717–720, 1987.Google Scholar
  195. Ríos, E. and G. Pizarró. Voltage sensors and calcium channels of excitation-contraction coupling. News Physiol. Sci. 3: 223–227, 1988.Google Scholar
  196. Rousseau, E. and G. Meissner. Single cardiac sarcoplasmic reticulum Ca2+-release channel: Activation by caffeine. Am. J. Physiol. 256: H328–11333, 1989.PubMedGoogle Scholar
  197. Rüegg, J.C. Effects of new inotropic agents on Ca++ sensitivity of contractile proteins. Circ. 73: (Suppl III), III–73, 1986.Google Scholar
  198. Saida, K. Intracellular Ca release in skinned smooth muscle. J. Gen _Physiol. 80: 191–202, 1982.CrossRefGoogle Scholar
  199. Saida, K. and C. van Breemen. GTP requirement for inositol-1,4,5-trisphosphate-induced Ca2z+ release from sarcoplasmic reticulum in smooth muscle. Biochem. Biophys. Res. Commun. 144: 1313–1316, 1987.Google Scholar
  200. Sakai, T. The effect of temperature and caffeine on the action of the contractile mechanism in striated muscle fibres. Jikeikea Med. J. 12: 88–102, 1965.Google Scholar
  201. Salama, G. and J. Abramson. Silver ions trigger Caz+ release by acting at the apparent physiological release site in sarcoplasmic reticulum. J. Biol. Chem. 259: 13363–13360, 1984.Google Scholar
  202. Sanchez, JA. and E. Stefani. Inward calcium current in twitch muscle fibres of the frog. J. Physiol. 283: 197–209, 1978.PubMedGoogle Scholar
  203. Sanchez, J.A., and E. Stefani. Kinetic properties of calcium channels of twitch muscle fibres of the frog. J. Physiol. 337: 1–17, 1983.PubMedGoogle Scholar
  204. Sasaguri, T., M. Hirata and H. Kuriyama. Dependence on Cat+ of the activities of phosphatidylinositol 4,5bisphosphate phosphodiesterase and inositol 1,4,5-trisphosphate phosphatase in smooth muscles of the porcine coronary artery. Biochem. J. 231: 497–503, 1985.PubMedGoogle Scholar
  205. Schilling, W.P. and JA. Drewe. Voltage-sensitive nitrendipine binding in an isolated cardiac sarcolemma preparation. J. Biol. Chem. 261: 2750–2758, 1986.Google Scholar
  206. Scholtysik, G., R. Salzmann, R. Berthold, J.W. Quast and R. Markstein. DPI 201–106, a novel cardiotonic agent. Combination of cAMP-independent positive inotropic, negative chronotropic, action potential prolonging and coronary dilatory properties, Naunyn-Schmiedeberg’s Arch. Pharmacol. 329: 316–325, 1985.Google Scholar
  207. Scholtysik, G., R. Salzmann and W. Gerber. Interaction of DPI 201–106 with cardiac glycosides. J. Cardiovasc. Pharmacol. 13: 342–347, 1989.PubMedCrossRefGoogle Scholar
  208. Schramm, M., G. Thomas, R. Towart and G. Franckowiak. Novel dihydropyridines with positive inotropic action through activation of Ca channel. Nature 303: 535–537, 1983.Google Scholar
  209. Schouten, JA. and H.E.D.J. ter Keurs. The slow repolarization of the action potential in rat heart. J. Phvsiol. 360: 13–26, 1985.Google Scholar
  210. Shattock, Mi. and D.M. Bers. The inotropic response to hypothermia and the temperature-dependence of ryanodine action in isolated rabbit and rat ventricular muscle: Implications for E-C coupling. Circ. Res. 61: 761–771, 1987.PubMedCrossRefGoogle Scholar
  211. Shimahara, T., R. Bournaud, I. Inoue and C. Strube. Reduced intramembrane charge movement in the dysgenic skeletal muscle cell. Pflugers Arch. 417: 111–113, 1990.Google Scholar
  212. Shoshan, V., D.H. MacLennan and D.S. Woods. A proton gradient controls a calcium-release channel in sarcoplasmic reticulum. Proc. Natl. Arad. Sci. USA 78: 4828–4832, 1981.Google Scholar
  213. Simon, S.M. and R.R. Rodolfo. Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. Biophys J. 48: 485–498, 1985.Google Scholar
  214. Somlyo, A.P. and B. Himpens. Cell calcium and its regulation in smooth muscle. FASEB J. 3: 2266–2276, 1989.Google Scholar
  215. Somlyo, A.V., H. Shuman and A.P. Somlyo. Composition of sarcoplasmic reticulum in situ by electron probe X-ray microanalysis. Nature 268: 556–558, 1977a.PubMedCrossRefGoogle Scholar
  216. Somlyo, A.V., H. Shuman and A.P. Somlyo. Elemental distribution in striated muscle and the effects of hypertonicity. Electron probe analysis of cryosections. J. Cell Biol. 74: 828–857, 1977b.PubMedCrossRefGoogle Scholar
  217. Somlyo, A.V. and Somlyo, A.P. Electron optical studies of calcium and other ion movements in the sarcoplasmic reticulum in situ. In: Sarcoplasmic Reticulum in Muscle Physiology Vol. 1., M.L. Entman and W.B. Van Winkle, CRC Press, Inc., Boca Raton, FL, pp. 31–50, 1986.Google Scholar
  218. Somlyo, A.P. and A.V. Somlyo. Flash photolysis studies of excitation-contraction coupling, regulation, and contraction in smooth muscle. Ann. Rev. Physiol. 52: 857–874, 1990.[7]Google Scholar
  219. Somlyo, A.V., M. Bond, A.P. Somlyo and A. Scarpa. Inositol trisphosphate-induced calcium release and contraction in vascular smooth muscle. Proc. Natl. Acad. Sci. USA 85: 5231–5235, 1985.CrossRefGoogle Scholar
  220. Somlyo, A.P., J.W. Walker, Y.E. Goldman, D.R. Trentham, S. Kobayashi, T. Kitazawa and A.V. Somlyo. Inositol trisphosphate, calcium and muscle contraction. Phil. Trans. Roy. Soc. London B 320: 399–414, 1988.PubMedCrossRefGoogle Scholar
  221. Stephenson, E.W. Excitation of skinned muscle fibers by imposed ion gradients. I. Stimulation of 45Ca efflux at constant [K] [Cl] product. J. Gen. Physiol. 86: 813–832, 1985.[7]Google Scholar
  222. Stern, M.D., A.A. Kort, G.M. Bhatnager and E.G. Lakatta. Scattered-light intensity fluctuations in diastolic rat cardiac muscle caused by spontaneous Ca++-dependent cellular mechanical oscillations. J. Gen. Physiol. 82: 119–153,1983.[7,9]Google Scholar
  223. Stern, M.D., M.C. Capogrossi and E.G. Lakatta. Propagated contractile waves in single cardiac myocytes modeled as regenerative calcium induced calcium release from the sarcoplasmic reticulum. Biophys. J. 45: 94a, 1984.Google Scholar
  224. Stern, M.D., M.C. Capogrossi and E.G. Lakatta. Spontaneous calcium release from the sarcoplasmic reticulum in myocardial cells: Mechanisms and consequences. Cell Calcium 9: 247–256, 1988.Google Scholar
  225. Stewart, P.S. and D.H. MacLennan. Surface particles of sarcoplasmic reticulum membranes. Structural features of the adenosine triphosphatase. J. Biol. Chem. 249: 985–993, 1974.Google Scholar
  226. Suarez-Isla, B.A., V. Irribarra, A. Oberhauser, L. Larralde, R. Bull, C. Hidalgo and E. Jaimovich. Inositol(1,4,5)trisphosphate activates a calcium channel in isolated sarcoplasmic reticulum membranes. Biophys. J. 54: 737–741, 1988.PubMedCrossRefGoogle Scholar
  227. Suematsu, E., M. Hirata, T. Hashimoto and H. Kuriyama. Inositol 1,4,5-trisphosphate releases Ca2+ from intracellular store sites in skinned single cells of porcine coronary artery. Biochem. Biophys. Res. Commun. 120: 481–485, 1984.Google Scholar
  228. Takamatsu, T. and W.G. Wier. Calcium waves in mammalian heart: Quantification of origin, magnitude, waveform, and velocity. FASEB J. 4: 1519–1525, 1990.PubMedGoogle Scholar
  229. Tanabe, T., K.G. Beam, J.A. Powell and S. Numa. Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature 336: 134–139, 1988.Google Scholar
  230. Tanabe, T., A. Mikami, S. Numa and K.G. Beam. Cardiac-type excitation-contraction coupling in dysgenic skeletal muscle injected with cardiac dihydropyridine receptor cDNA. Nature 344: 451–453, 1990a.PubMedCrossRefGoogle Scholar
  231. Tanabe, T., K.G. Beam, BA. Adams, T. Niidome and S. Numa. Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature 356: 567–569, 1990b.Google Scholar
  232. Thieleczek, R., G.W. Mayr and N.R. Brandt. Inositol polyphosphate-mediated repartitioning of aldolase in skeletal muscle triads and myofibrils. J. Biol. Chem. 264: 7349–7456, 1989.PubMedGoogle Scholar
  233. Trimm, J.L., G. Salama and J. Abramson. Sulfhydryl oxidation induces rapid calcium release from sarcoplasmic reticulum vesicles. J. Biol. Chem. 261: 16092–16098, 1986.PubMedGoogle Scholar
  234. Unwin, P.N.T. and G. Zampighi. Structure of the junction between communicating cells. Nature 283: 545–549, 1980.[1]Google Scholar
  235. Valdeolmillos, M., S.C. O’Neill, G.L. Smith and DA. Eisner. Calcium-induced calcium release activates contraction in intact cardiac cells. Pflügers Arch. 413: 676–678, 1989.Google Scholar
  236. van Breemen, C. and K. Saida. Cellular mechanisms regulating [Ca2+]i in smooth muscle. Ann. Rev. Physiol. 51: 315–329, 1989.CrossRefGoogle Scholar
  237. Varsanyi, M., M. Messer and N.R. Brandt. Intracellular localization of inositol-phospholipid-metabolizing enzymes in rabbit fast-twitch muscle. Eur. J. Biochem. 179: 473–479, 1989.Google Scholar
  238. Vassort, G. Influence of sodium ions on the regulation of frog myocardiac contractility. Pflügers Arch. 339: 225246, 1973.Google Scholar
  239. Vassort, G. Influence of sodium ions on the regulation of frog myocardiac contractility. Pflügers Arch. 339: 225246, 1973.Google Scholar
  240. Vaughan-Jones, R.D. Chloride-bicarbonate exchange in the sheep cardiac purkinje fiber. In: Intracellular pH, Its Measurement, Regulation and Utilization in Cellular Functions. Alan R. Liss, Inc., New York, pp. 239–252, 1982.Google Scholar
  241. Vergara, J., K. Asotra and M. Delay. A chemical link in excitation-contraction coupling in skeletal muscle. In: Cell Calcium and Control of Membrane Transport. L.J. Mandel and D.C. Eaton, Rockefeller University Press, New York, pp. 133–151, 1987.Google Scholar
  242. Vites, A.-M. and A. Pappano. Inositol 1,4,5-trisphosphate releases intracellular Ca2+ in permeabilized chick atria. Am. J. Physiol. 258: H1745–H1752, 1990.PubMedGoogle Scholar
  243. Volpe, P., G. Salviati, F. De Virgilio and T. Pozzan. Inositol 1,4,5-triphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle. Nature 316: 347–349, 1985.PubMedCrossRefGoogle Scholar
  244. Volpe, P.and E.W. Stephenson. Ca2+ dependence of transverse tubule-mediated calcium release in skinned skeletal muscle fibers. J. Gen. Physiol. 87: 271–288, 1986.CrossRefGoogle Scholar
  245. Volpe, P., F. Di Virgilio, T. Pozzan and G. Salviati. Role of inositol-1,4,5-tripphosphate in excitation-contractioncoupling in skeletal muscle. FEBS Lett. 197: 1–4, 1986.PubMedCrossRefGoogle Scholar
  246. Walker, J.W., A.V. Somlyo, Y.E. Goldman, A.P. Somlyo and D.R. Trentham. Kinetics of smooth and skeletal muscle activation by laser pulse photolysis of caged inositol 1,4,5-triphosphate. Nature 327: 249–252, 1987.PubMedCrossRefGoogle Scholar
  247. Weber, A. and R. Herz. The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum. J. Gen. Physiol. 52: 750–759, 1968.PubMedCrossRefGoogle Scholar
  248. Wier, W.G., AA. Kort, M.D. Stern, E.G. Lakatta and E. Marban. Cellular calcium fluctuations in mammalian heart: Direct evidence from noise analysis of aequorin signals and Purkinje fibers. Proc. Natl. Acad. Sgj. USA 80: 7367–7371, 1983.CrossRefGoogle Scholar
  249. Withering, W. An account of the foxglove, and some of its medicinal uses: With practical remarks on dropsy and other diseases. London: G.G.J. and J. Robinson, 1785.Google Scholar
  250. Yatani, A. and A.M. Brown. Rapid ß-adrenergic modulation of cardiac calcium channel currents by a fast G protein pathway. Science 245: 71–74, 1989.Google Scholar
  251. Yatani, A., J. Codina, Y. Imoto, J.P. Reeves, L. Birmbaumer and A.M. Brown. A G protein directly regulates mammalian cardiac calcium channels. Science 238: 1288–1292, 1987.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Donald M. Bers
    • 1
  1. 1.Department of PhysiologyLoyola University Medical SchoolMaywoodUSA

Personalised recommendations