Sarcoplasmic Reticulum Ca Uptake, Content and Release

  • Donald M. Bers
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 122)


Kielley & Meyerhoff (1948) first described a Mg-activated ATPase in a microsomal fraction from muscle. Ebashi (1961; Ebashi & Lipmann, 1962) and Hasselbach & Makinose (1961) later identified this as the membrane associated Ca-ATPase or “relaxing factor” in muscle responsible for lowering cytoplasmic [Ca]. This Ca-pump has been the subject of intensive study since that time (see recent reviews: Ikemoto, 1982; Hasselbach & Oetliker, 1983; Tanford, 1983; Martonosi & Beeler, 1983; Inesi, 1985, 1987; Fleischer & Tonomura, 1985; Entman & Van Winkle, 1986; Schatzmann, 1989).


Ryanodine Receptor Terminal Cisterna Mammalian Cardiac Muscle Rapid Cool Contracture Intact Cardiac Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alderson, B.H. and J.J. Feher. The interaction of calcium and ryanodine with cardiac sarcoplasmic reticulum. Biochim. Biophys. Acta 900: 221–229, 1987.Google Scholar
  2. Allen, D.G., P.G. Morris, C.H. Orchard and J.S. Pirolo. A nuclear magnetic resonance study of metabolism in the ferret heart during hypoxia and inhibition of glycolysis. J. Physiol. 361: 185–204, 1985a.PubMedGoogle Scholar
  3. Arlock, P. and B.G. Katzung. Effects of sodium substitutes on transient inward current and tension in guinea-pig and ferret papillary muscle. J. Physiol. 360: 105–120, 1985.PubMedGoogle Scholar
  4. Berridge, M.J. Inositol triphosphate and diacylglycerol: Two interacting second messengers. Ann. Rev. Biochem. 56: 159–193, 1987.PubMedCrossRefGoogle Scholar
  5. Berridge, M.J. and A. Galione. Cytosolic calcium oscillators. FASEB J. 2: 3074–3082, 1988.Google Scholar
  6. Berridge, M.J. and R.F. Irvine. Inositol phosphates and cell signalling. Nature 341: 197–205, 1989.Google Scholar
  7. Bers, D.M. Early transient depletion of extracellular [Ca] during individual cardiac muscle contractions. Am. J. Physiol. 244: H462–H468, 1983.Google Scholar
  8. Bers, D.M. Ca influx and sarcoplasmic reticulum Ca release in cardiac muscle activation during post-rest recovery. Am. J. Physiol. 248: H366–H381, 1985.Google Scholar
  9. Bers, D.M. Ryanodine and Ca content of cardiac SR assessed by caffeine and rapid cooling contractures. Am. J. Physiol. 253: C408–C415, 1987a.Google Scholar
  10. Bers, D.M. Mechanisms contributing to the cardiac inotropic effect of Na-pump inhibition and reduction of extracellular Na. J. Gen. Physiol. 90: 479–504, 1987b.CrossRefGoogle Scholar
  11. Bers, D.M. and J.H.B. Bridge. The effect of acetylstrophanthidin on twitches, microscopic tension fluctuations and cooling contractures in rabbit ventricular muscle. J. Physiol. 404: 53–69, 1988.PubMedGoogle Scholar
  12. Bers, D.M. and J.H.B. Bridge. Relaxation of rabbit ventricular muscle by Na-Ca exchange and sarcoplasmic reticulum Ca-pump: Ryanodine and voltage sensitivity. Circ. Res. 65: 334–342, 1989.Google Scholar
  13. Bers, D.M. and D.M. Christensen. Functional interconversion of rest decay and ryanodine effects in rabbit or rat ventricle depends on Na/Ca exchange. J. Mol. Cell. Cardiol. 22: 715–523, 1990.PubMedGoogle Scholar
  14. Bers, D.M. and K.T. MacLeod. Cumulative extracellular Ca depletions in rabbit ventricular muscle monitored with Ca selective microelectrodes. Circ. Res. 58: 769–782, 1986.Google Scholar
  15. Bers, D.M., J.H.B. Bridge and K.T. MacLeod. The mechanism of ryanodine action in cardiac muscle assessed with Ca selective microelectrodes and rapid cooling contractures. Can. J. Physiol. Pharmacol. 65: 610–618, 1987.PubMedCrossRefGoogle Scholar
  16. Bers, D.M., J.H.B. Bridge and K.W. Spitzer. Intracellular Ca transients during rapid cooling contractures in guinea-pig ventricular myocytes. J. Physiol. 417: 537–553, 1989.PubMedGoogle Scholar
  17. Blaney, L., H. Thomas, J. Muir and A. Henderson. Action of caffeine on calcium transport by isolated fractions of myofibrils, mitochondria and sarcoplasmic reticulum from rabbit heart. Cire. Res. 43: 520–526, 1978.CrossRefGoogle Scholar
  18. Blinks, J.R., Y.-D. Cai and N.K.M. Lee. Inositol 1,4,5-trisphosphate causes calcium release in frog skeletal muscle only when transverse tubules have been interrupted. J. Physiol. 394: 23P, 1987.Google Scholar
  19. Block, B.A., T. Imagawa, K.P. Campbell and C. Franzini-Armstrong. Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J. Cell Biol. 107: 2587–2600, 1988.PubMedCrossRefGoogle Scholar
  20. Brand], C.J., N.M. Green, B. Korczak and D.H. MacLennan. Two Ca2+ ATPase genes: Homologies and mechanistic implications of deduced amino acid sequences. Cell 44: 597–607, 1986.CrossRefGoogle Scholar
  21. Brandt, C.J., S. deLeon, D.R. Martin and D.H. MacLennan. Adult forms of the Cat+ ATPase of sarcoplasmic reticulum. J. Biol. Chem. 262: 3768–3774, 1987.Google Scholar
  22. Bridge, J.H.B. Relationships between the sarcoplasmic reticulum and transarcolemmal Ca transport revealed by rapidly cooling rabbit ventricular muscle. J. Gen. Physiol. 88: 437–473, 1986.CrossRefGoogle Scholar
  23. Brutsaert, D.L. and S.U. Sys. Relaxation and diastole of the heart. Physiol. Rev. 69: 1228–1315, 1989. Buggisch, D., G. Isenberg, U. Ravens and G. Scholtysik. The role of sodium channels in the effects of the cardiotoniic compound DPI 201–106 on contractility and membrane potentials in isolated mammalian heart preparations. Eur. J. Pharmacol. 118: 303–311, 1985.Google Scholar
  24. Buxton, I.L.O. and L.L Brunton. Action of the cardiac ctl -adrenergic receptor activation of cyclic AMP degradation. J. Biol. Chem. 26: 6733–6737, 1985.Google Scholar
  25. Callewaert, G., L. Cleemann and M. Morad. Caffeine-induced C7+ release activates Ca2+ extrusion via Na+-Ca2+ exchanger in cardiac myocytes. Am. J. Physiol. 257: C147–C152, 1989.PubMedGoogle Scholar
  26. Campbell, K.P. Protein components and their roles in sarcoplasmic reticulum function. In: Sarcoplasmic Reticulum in Muscle Physiology Vol. 1. M.L. Entman and W.B. Van Winkle, CRC Press, Inc., Boca Raton, FL, pp. 65–99, 1986.Google Scholar
  27. Campbell, K.P., C. Franzini-Armstrong and A.E. Shamoo. Further characterization of light and heavy sarcoplasmic reticulum vesicles. Identification of the “sarcoplasmic reticulum feet” associated with heavy sarcoplasmic reticulum vesicles. Biochim. Biophvs. Acta 602: 97, 1980.Google Scholar
  28. Campbell, K.P., D.H. MacLennan, A.O. Jorgensen and M.C. Mintzer. Purification and characterization of calsequestrin from canine cardiac sarcoplasmic reticulum and identification of the 53,000 dalton glycoprotein. J. Biol. Chem. 258: 1197–1204, 1983.PubMedGoogle Scholar
  29. Campbell, K.P., T. Imagawa, J.S. Smith, R. Coronado. Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca permeable pore of the calcium release channel. J. Biol. Chem. 262: 16636–16643,1987.[6]Google Scholar
  30. Chadwick, C.C., A. Saito and S. Fleischer. Isolation and characterization of the inositol triphosphate receptor from smooth muscle. Proc. Natl. Acad. Sci. USA 87: 2132–2136, 1990.CrossRefGoogle Scholar
  31. Chamberlain, B.K., P. Volpe and S. Fleischer. Calcium-induced calcium release from purified cardiac sarcoplasmic reticulum vesicles. J. Biol. Chem. 259: 7540–7546, 1984a.PubMedGoogle Scholar
  32. Chamberlain, B.K., P. Volpe and S. Fleischer. Inhibition of calcium-induced calcium release from purified cardiac sarcoplasmic reticulum vesicles. J. Biol. Chem. 259: 7547–7553, 1984b.Google Scholar
  33. Chapman, R.A. and C. Léoty. The time-dependent and dose-dependent effects of caffeine on the contraction of the ferret heart. J. Physiol. 256: 287–314, 1976.PubMedGoogle Scholar
  34. Chapman, RA. and J. Tunstall. Pharmacology of calcium uptake and release from the sarcoplasmic reticulum: sensitivity to methylxanthines and ryanodine. In: Handbook of Experimental Pharmacology Vol. 83, P.F. Baker, ed., Springer-Verlag, New York, pp. 199–216, 1988.Google Scholar
  35. Chapman, RA., A. Coray and J.A.S. McGuigan. Sodium-calcium exchange in mammalian heart: The maintenance of low intracellular calcium concentration. In: Cardiac Metabolism. A.J. Drake-Holland and M.I.M. Noble, John Wiley & Sons, Ltd., pp. 117–149, 1983.Google Scholar
  36. Clarke, D.M, K. Maruyama, T.W. Loo, E. Leberer, G. Inesi and D.H. MacLennan. Functional consequences of glutamate, aspartate, glutamine, and asparagine mutations in the stalk sector of the Ca2+-ATPase of sarcoplasmic reticulum. J. Biol. Chem. 264: 11246–11251, 1989a.PubMedGoogle Scholar
  37. Clarke, D.M., T.W. Loo, G. Inesi and D.H. MacLennan. Location of high affinity Ca2+-binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca +-ATPase. Nature 339: 476–478, 1989b.Google Scholar
  38. Clusin, W.T., R. Fischmeister and R.L. DeHaan. Caffeine-induced current in embryonic heart cells: Time course and voltage dependence. Am. J. Physiol. 245: H528–H532, 1983.Google Scholar
  39. Coronado, R. and C. Miller. Voltage-dependent caesium blockade of a cation channel from fragmented sarcoplasmic reticulum. Nature 280: 807–819, 1979.Google Scholar
  40. Coronado, R. and C. Miller. Decamethonium and hexamethonium block K+ channels of sarcoplasmic reticulum. Nature 288: 495–497, 1980.Google Scholar
  41. Coronado, R., R.L. Rosenberg and C. Miller. Ionic selectivity, saturation, and block in a K+ channel from sarcoplasmic reticulum. J. Gen. Physiol. 76: 425–446, 1980.PubMedCrossRefGoogle Scholar
  42. Cozens, B. and R.A.F. Reithmeier. Size and shape of rabbit skeletal muscle calsequestrin. J. Biol. Chem. 259: 6248–6252, 1984.Google Scholar
  43. Daniels, M.C.G. and H.E.D.J. ter Keurs. Spontaneous contractions in rat cardiac trabeculae. J. Gen. Physiol. 95: 1123–1137, 1990.Google Scholar
  44. Debetto, P., F. Cusinato and S. Luciani. Temperature dependence of Nat/Ca exchange activity in beef heart sarcolemmal vesicles and proteoliposomes. Arch. Biochem. Biophys. 278: 205–210, 1990.Google Scholar
  45. deMeis, L. and A.L. Vianna. Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum. Ann. Rev. Biochem. 48: 275, 1979.CrossRefGoogle Scholar
  46. Dresdner, K.P. and R.P. Kline. Extracellular calcium ion depletion in frog cardiac ventricular muscle. Biophys. J. 48: 33–45, 1985.Google Scholar
  47. duBell, W.H., and S.R. Houser. Voltage and beat dependence of the Ca2+ transient in feline ventricular myocytes. Am. J. Physiol. 257: H746–H759, 1989.PubMedGoogle Scholar
  48. DuPont, Y. Kinetics and regulation of sarcoplasmic regiculum ATPase. Eur. J. Biochem. 72: 185–190, 1977.Google Scholar
  49. Ebashi, S. Calcium binding activity of vesicular relaxing factor. J. Biochem. 50: 236–244, 1961.Google Scholar
  50. Ebashi, S. and F. Lipmann. Adenosine triphosphate-linked concentration of calcium ions in a particulate fraction of rabbit muscle. J. Cell Biol. 14: 389–400, 1962.Google Scholar
  51. Ehrlich, B.E. and J. Watras. Inositol 1,4,5-triphosphate activates a channel from smooth muscle sarcoplasmic reticulum. Nature 336: 583–586, 1988.PubMedCrossRefGoogle Scholar
  52. Eisner, DA. and M. Valdeolmillos. The mechanism of the increase of tonic tension produced by caffeine in sheep cardiac Purkinje fibres. J. Physiol. 364: 313–326, 1985.PubMedGoogle Scholar
  53. Ellis, K.O., J.L. F.L. Wessels and J.F. Carpenter. A comparison of skeletal, cardiac and smooth muscle actions of dantrolene sodium-a skeletal muscle relaxant. Arch. Int. Pharmacodyn. 224: 118–132, 1976.PubMedGoogle Scholar
  54. Endo, M. Conditions required for calcium-induced release of calcium from the sarcoplasmic reticulum. Proc. Japan. Acad. 51: 467–472, 1975a.Google Scholar
  55. Endo, M., S. Yagi, T. Ishizuka, H. Koriuti, K.Koga and K. Amaha. Changes in the Ca-induced Ca release mechanism in the sarcoplasmic reticulum of the muscle from a patient with malignant hyperthermia. Biomed. Res. 4: 83–92, 1983.Google Scholar
  56. Entman, M.L. and W.B. Van Winkle, Eds. Sarcoplasmic Reticulum in Muscle Physiology Vol. 1. CRC Press, Inc., Boca Raton, FL, 1986.Google Scholar
  57. Fabiato, A. Effects of cyclic AMP and phosphodiesterase inhibitors on the contractile activation and the Ca2+ transient detected with aequorin in skinned cardiac cells from rat and rabbit ventricles (abstr.). J. Gen. Physiol. 78: 15a–16a, 1981b.CrossRefGoogle Scholar
  58. Fabiato, A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am. J. Physiol. 245: Cl-C14, 1983.Google Scholar
  59. Fabiato, A. Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J. Gen. Physiol. 85: 247–290, 1985b.Google Scholar
  60. Fabiato, A. Effects of ryanodine in skinned cardiac cells. Fed. Proc. 44: 2970–2976, 1985d.Google Scholar
  61. Fabiato, A. Use of aequorin for the appraisal of the hypothesis of the release of calcium from the sarcoplasmic reticulum induced by a change of pH in skinned cardiac cells. Cell Calcium 6: 95–108, 1985e.PubMedCrossRefGoogle Scholar
  62. Fabiato, A. Comparison and relation between inositol(1,4,5)-triphosphate-induced release and calcium-induced release of calcium from the sarcoplasmic reticulum. In: Recent Advances in Calcium Channels and Calcium Antagonists K. Yamada, S. Shibata, Pergamon Press, Inc., Elmsford, New York, pp. 35–39, 1990.Google Scholar
  63. Fabiato, A. and F. Fabiato. Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J. Physiol. 249: 469–495, 1975a.PubMedGoogle Scholar
  64. Fabiato, A. and F. Fabiato. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J. Physiol. 276: 233–255, 1978a.PubMedGoogle Scholar
  65. Fairhurst, A.S. and W. Hasselbach. Calcium efflux from a heavy sarcotubular fraction. Effects of ryanodine, caffeine and magnesium. Eur. J. Biochem. 13: 504–509, 1970.PubMedCrossRefGoogle Scholar
  66. Feher, J.J., N.H. Manson and J.L. Poland. The rate and capacity of calcium uptake by sarcoplasmic reticulum in fast, slow, and cardiac muscle: Effects of ryanodine and ruthenium red. Arch. Biochem. Biophys. 265: 171182, 1988a.Google Scholar
  67. Feher, J.J., M.J. Stephens, B.A. Alderson, and J.L. Poland. Contribution of the ryanodine-sensitive fraction to the capabilities of cardiac SR. J. Mol. Cell. Cardiol. 20: 1107–1118, 1988b.Google Scholar
  68. Ferris, C.D., R.L. Huganir and S.H. Snyder. Calcium flux mediated by purified inositol 1,4,5-triphosphate receptor in reconstituted lipid vesicles is allosterically regulated by adenine nucleotides. Proc. Natl. Acad. Sci. USA 87: 2147–2151, 1990.PubMedCrossRefGoogle Scholar
  69. Fill, M., R. Coronado, J.R. Mickelson, J. Vilven, J. Ma, B.A. Jacobson and C.F. Louis. Abnormal ryanodine receptor channels in malignant hyperthermia. Biophys. J. 50: 471–475, 1990.Google Scholar
  70. Fleischer, S. and M. Inui. Biochemistry and biophysics of excitation-contraction coupling. Ann. Rev. Biophys. Chem. 18: 333–364, 1989.CrossRefGoogle Scholar
  71. Fleischer, S. and Y. Tonomura, In: Structure and Function of Sarcoplasmic Reticulum Academic Press, New York, 1985.Google Scholar
  72. Fleischer, S., E.M. Ogunbunmi, M.C. Dixon and E.A.M. Fleer. Localization of Cat+ release channels with ryanodine in junctional terminal cisternae of sarcoplasmic reticulum of fast skeletal muscle. Proc. Natl. Acad. Sci. USA 82: 7256–7259, 1985.PubMedCrossRefGoogle Scholar
  73. Hiegel, L., K. Burns, M. Opas, and M. Michalak. The high affinity calcium binding protein of sarcoplasmic reticulum. Tissue distribution and homology with calregulin. Biochim. Biophys. Acta 982: 1–8, 1989a.Google Scholar
  74. Fliegel, L., K. Burns, D.H. MacLennan, R.A.F. Reithmeier and M. Michalak. Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 264: 21522–21528, 1989b.Google Scholar
  75. Fliegel, L., M. Ohnishi, M.R. Carpenter, V.K. Khanna, R.A.F. Reithmeier and D.H. MacLennan. Amino acid sequence of rabbit fast-twitch skeletal muscle calsequestrin deduced from cDNA and peptide sequencing. Proc. Natl. Acad. Sgj. USA 84: 1167–1171, 1987.CrossRefGoogle Scholar
  76. Franzini-Armstrong,C., L.J. Kenney and E. Verriano-Marston. The structure of calsequestrin in triads of vertebrate skeletal muscle: A deep etch study. J. Cell Biol. 105: 49–56, 1987.Google Scholar
  77. Fujü, J., A. Ueno, K. Kitano, S. Tanaka, M. Kadoma and M. Tada. Complete complementary DNA-derived amino acid sequence of canine cardiac phospholamban. J. Clin. Invest. 70: 301–304, 1987.Google Scholar
  78. Furuichi, T., S. Yoshikawa, A. Miyawaki, K. Wada, N. Maeda and K. Mikoshiba. Primary structure and functional expression of the inositol 1,4,5-triphosphate-binding protein P400 Nature 342: 32–38, 1989.Google Scholar
  79. Hajdu, S., and E. Leonard. Action of ryanodine on mammalian cardiac muscle. Effects on contractility, and reversal of digitalis-induced ventricular arrhythmias. Circ. Res. 9: 1291–1283, 1961.CrossRefGoogle Scholar
  80. Hals, G.D., P.G. Stein and P.T. Palade. Single channel characteristics of a high-conductance anion channel in sarcoballs. J. Gen. Physiol. 93: 385–410, 1989.Google Scholar
  81. Harrison, S.M. and D.M. Bers. The influence of temperature on the calcium sensitivity of the myofilaments of skinned ventricular muscle from the rabbit. J. Gen. Physiol. 93: 411–427, 1989a.PubMedCrossRefGoogle Scholar
  82. Hasselbach, W. and M. Makinose. Die Kalciumpumpe der `Erschlaffungsgrana’ des Muskels un ihre Abhängigkeit von der ATP-spaltung. Biochem. Z. 333: 518–528, 1961.Google Scholar
  83. Hasselbach, W. and H. Oetliker. Energetics and electrogenicity of the sarcoplasmic reticulum calcium pump. Anu. Rev. Physiol. 45: 325, 1983.Google Scholar
  84. Hicks, M.J., M. Shigekawa and A.M. Katz. Mechanism by which cyclic adenosine 3’:5’-monophosphate-dependent protein kinase stimulates calcium transport in cardiac sarcoplasmic reticulum. Circ. Res. 44: 384–391, 1979.PubMedCrossRefGoogle Scholar
  85. Hidalgo, C., N. Ikemoto and J. Gergely. Role of phospholipids in the calcium-dependent ATPase of sarcoplasmic reticulum. Enzymatic and ESR studies with phospholipid-replaced membranes. J. Biol. Chem. 251: 42244232, 1976.Google Scholar
  86. Hilgemann, D.W. Extracellular calcium transients and action potential configuration changes related to post-stimulatory potentiation in rabbit atrium. J. Gen. Physiol. 87: 675–706, 1986a.Google Scholar
  87. Hilgemann, D.W. Extracellular calcium transients at single excitations in rabbit atrium measured with tetramethylmurexide. J. Gen. Physiol. 87: 707–735, 1986b.CrossRefGoogle Scholar
  88. Hilgemann, D.W. and GA. Langer. Transsarcolemmal calcium movements in arterially perfused rabbit right ventricle measured with extracellular calcium-sensitive dyes. Circ. Res. 54: 461–467, 1984.Google Scholar
  89. Hilgemann, D.W. and D. Noble. Excitation-contraction coupling and extracellular calcium transients in rabbit atrium: Reconstruction of basic cellular mechanisms. Phil. Trans. Roy. Soc. London 230: 163–205, 1986.Google Scholar
  90. Hilgemann, D.W., M.J. Delay and G.A. Langer. Activation-dependent cumulative depletions of extracellular free calcium in guinea pig atrium measured with antipyrylazo III and tetramethylmurexide. Circ. Res. 53: 779793, 1983.Google Scholar
  91. Hilkert, R.J., N.F. Zaidi, C.F. Lagenaur and G. Salama. Immunoaffinity purified 106-kDa protein from sarcoplasmic reticulum (SR) is a Ca2+ release channel modulated by agents that alter Ca2+ release. Biophys. J. 57: 275a, 1990.Google Scholar
  92. Hunter, D.R., R.A. Haworth and H.A. Berkoff. Measurement of rapidly exchangeable cellular calcium in the perfused beating rat heart. Proc. Nat. Acad. Sci. USA 78: 5665–5668, 1981.CrossRefGoogle Scholar
  93. Hymel, L., M. Inui, S. Fleischer and H. Schindler. Purified ryanodine receptor of skeletal muscle sarcoplasmic reticulum forms Cat+-activated oligomeric Cal+ channels in planar bilayers. Proc. Natl. Acad. Sci. USA 85: 441–445, 1988.PubMedCrossRefGoogle Scholar
  94. Ikemoto, N. Structure and function of the calcium pump protein of sarcoplasmic reticulum. Ann. Rev. Physiol. 44: 297–317, 1982.Google Scholar
  95. Ikemoto, N., G.M. Bhatnagar, B. Nagy and J. Gergely. Interaction of divalent cations with the 55,000-dalton protein component of the sarcoplasmic reticulum. Studies of fluorescence and circular dichroism. J. Biol. Chem. 247: 7835–7837, 1972.PubMedGoogle Scholar
  96. Ikemoto, N., B. Nagy, G.M. Bhatnagar and J. Gergely. Studies on a metal-binding protein of the sarcoplasmic reticulum. J. Biol. Chem. 249: 2357–2365, 1974.Google Scholar
  97. Ikemoto, N., M. Ronjat, L.G. Meszaros and M. Koshita. Postulated role of calsequestrin in the regulation of calcium release from sarcoplasmic reticulum. Biochemistry 28: 6764–6771, 1989.Google Scholar
  98. Imagawa, T., J.S. Smith, R. Coronado and K.P. Campbell. Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+- permeable pore of the calcium release channel. J. Biol. Chem. 262: 16636–16643, 1987.PubMedGoogle Scholar
  99. Inesi, G. Mechanism of calcium transport. Ann. Rev. Physiol. 47: 573–601, 1985.CrossRefGoogle Scholar
  100. Inesi, G. Characterization of partial reactions in the catalytic and transport cycle of sarcoplasmic reticulum ATPase. In: Proteins of Excitable Membranes B. Hille and D.M Frambrough, John Wiley & Sons, Inc., New York, pp. 231–255, 1987.Google Scholar
  101. Inui, M., B.K. Chamberlain, A. Saito and S. Fleischer. The nature of the modulation of Ca2+ transport as studied by reconstitution of cardiac sarcoplasmic reticulum. J. Biol. Chem. 261: 1794–1800, 1986.PubMedGoogle Scholar
  102. Inui, M., A. Saito and S. Fleischer. Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J. Biol. Chem. 262: 1740–1747, 1987a.PubMedGoogle Scholar
  103. Inui, M., A. Saito and S. Fleischer. Isolation of the ryanodine receptor from cardiac sarcoplasmic reticulum and identity with the feet structures. J. Biol. Chem. 262: 15637–15642, 1987b.PubMedGoogle Scholar
  104. Iwasa, Y. and M.M. Hosey. Phosphorylation of cardiac sarcolemma proteins by the calcium-activated phospholipid-dependent protein kinase. J. Biol. Chem. 259: 534–540, 1984.Google Scholar
  105. James, P., M. Inui, M. Tada, M. Chiesi and E. Carafoli. Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. Nature 342: 90–92, 1989.Google Scholar
  106. Jenden, D.J. and A.S. Fairhurst. The pharmacology of ryanodine. Pharmacol. Rev. 21: 1–25, 1969.CrossRefGoogle Scholar
  107. Jones, L.R. and S.E. Cala. Biochemical evidence for functional heterogeneity of cardiac sarcoplasmic reticulum vesicles. J. Biol. Chem. 259: 11809–11818, 1981.Google Scholar
  108. Jones, L.R., H.R. Besch, J.L. Sutko and J.T. Willcrson. Ryanodine-induced stimulation of net Ca + + uptake by cardiac sarcoplasmic reticulum vesicles. J. Pharmacol. Exp. Ther. 209: 48–55, 1979.Google Scholar
  109. Jorgensen, A.O. and K.P. Campbell. Evidence for the presence of calsequestrin in two structurally different regions of myocardial sarcoplasmic reticulum. J. Cell Biol. 98: 1597–1602, 1984.Google Scholar
  110. Jorgensen, A.O., R. Broderick, A.P. Somlyo and A.V. Somlyo. Two structurally distinct calcium storage sites in rat cardiac sarcoplasmic reticulum: An electron microprobe analysis study. Circ. Res. 63: 1060–1069, 1988.Google Scholar
  111. Jorgensen, A.O., A. C-Y. Shen, W. Arnold, A.T. Leung and K.P. Campbell. Subcellular distribution of the 1,4dihydropyridine receptor in rabbit skeletal muscle in situ: An immunofluorescence and immunocolloidal gold-labeling study. J. Cell Biol. 109: 135–147, 1989.Google Scholar
  112. Kielley W.W. and O. Meyerhof. A new magnesium-activated adenosinetriphosphatase from muscle. J. Biol. Chem. 174: 387–388, 1948.Google Scholar
  113. Kim, D.H., FA. Speter, S.T. Ohnishi, J.F. Ryan, J. Roberts, P.D. Allen, L.G. Meszaros, B. Antoniu and N. Ikemoto. Kinetic studies of Ca+ release from sarcoplasmic reticulum of normal and malignant hyperthermia susceptible pig muscles. Biochim. Biophys. Acta 775: 320–327, 1984.Google Scholar
  114. Kirchberger, MA., M. Tada and A.M. Katz. Adenosine 3’-5’-monophosphate dependent protein kinase-catalyzed phosphorylation reaction and its relationship to calcium transport in cardiac sarcoplasmic reticulum. J. Biol. Chem. 249: 6166–6173, 1974.PubMedGoogle Scholar
  115. Kort, A.A., M.C. Capogrossi and E.G. Lakatta. Frequency, amplitude, and propagation velocity of spontaneous Ca2 + -dependent contractile waves in intact adult rat cardiac muscle and isolated myocytes. Circ. Res. 57: 844–855, 1985.PubMedCrossRefGoogle Scholar
  116. Krafte, D.S. and R.S. Kass. Hydrogen ion modulation of Ca channel current in cardiac ventricular cells. J. Gen. Physiol. 91: 641–657, 1988.Google Scholar
  117. Kurachi, Y. The effects of intracellular protons on the electrical activity of single ventricular cells. Pflugers Arch. 394: 264–270, 1982.Google Scholar
  118. Lai, FA., H. Erickson, BA. Block and G. Meissner. Evidence for a junctional feet-ryanodine receptor complex from sarcoplasmic reticulum. Biochem. Biophvs. Res. Commun. 143: 704–709, 1987.Google Scholar
  119. Lai, F.A., H.F. Erickson, E. Rousseau, Q.-Y. Li, and G. Meissner. Purification and reconstitution of the calcium release channel from skeletal muscle. Nature 331: 315–319, 1988a.Google Scholar
  120. Lai, FA., K. Anderson, E. Rousseau, Q.-Y. Liu and G. Meissner. Evidence for a Ca2+ channel within the ryanodine receptor complex from cardiac sarcoplasmic reticulum. Biochem. Biophys. Res. Commun. 151: 441–449, 1988b.Google Scholar
  121. Lai, FA., M. Misra, L. Xu, H.A. Smith and G. Meissner. The ryanodine receptor-Ca2+ release channel complex of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 264: 16776–16785, 1989.PubMedGoogle Scholar
  122. Langer, G.A., T.L. Rich and F.B. Orner. Calcium exchange under non-perfusion limited conditions in rat ventricular cells: Identification of subcellular compartments. Am. J. Physiol. 259: H592–11602, 1990.Google Scholar
  123. Lattanzio, F.A. Jr., R.G. Schlatterer, M. Nicar, K.P. Campbell and J.L. Sutko. The effects of ryanodine on passive calcium fluxes across sarcoplasmic reticulum membranes. J. Biol. Chem. 262: 2711–2718, 1987.PubMedGoogle Scholar
  124. Leberer, E., J.H.M. Charuk, D.M. Clarke, N.M. Green, E. Zubrzycka-Gaarn and D.H. MacLennan. Molecular cloning and expression of cDNA encoding the 53,000-dalton glycoprotein of rabbit skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 264: 3484–3492, 1989a.PubMedGoogle Scholar
  125. Leberer, E., J.H.M. Charuk, N.M. Green and D.H. MacLennan. Molecular cloning and expression of cDNA encoding a lumenal calcium binding protein from sarcoplasmic reticulum. Proc. Natl. Acad. Sci. USA 86: 6047–6051, 1989b.PubMedCrossRefGoogle Scholar
  126. Leberer, E., B.G. Timms, K.P. Campbell and D.H. MacLennan. Purification, calcium binding properties, and ultrastructural localization of the 52,000- and 160,000 (sarcalumenin)-dalton glycoproteins of the sarcoplasmic reticulum. J. Biol. Chem. 265: 10118–10124, 1990.PubMedGoogle Scholar
  127. Levi, R.C. an G. Alloatti. Histamine modulates calcium current in guinea pig ventricular myocytes. J. Pharmacol. Exp. Ther. 246: 377–383, 1988.Google Scholar
  128. Levin, K.R. and E. Page. Quantitative studies on plasmalemmal folds and caveolae of rabbit ventricular myocardial cells. Circ. Res. 46: 244–255, 1980.Google Scholar
  129. Lewartowski, B. and B. Pytkowski. Cellular mechanism of the relationship between myocardial force and frequency of contractions. Frog. Biophys. Moles. Biol. 50: 97–120, 1987.Google Scholar
  130. Lewartowski, B., B. Pytkowski and A. Janczewski. Calcium fraction correlating with contractile force of ventricular muscle of guinea-pig heart. Pflügers Arch. 401: 198–203, 1984.Google Scholar
  131. Lewartowski, B., R.G. Hansford, G.A. Langer and E.G. Lakatta. Contraction and sarcoplasmic reticulum Ca2+ content in single myocytes of guinea pig heart: Effect of ryanodine. Am. J. Physiol. 259: H1222–H1229, 1990.PubMedGoogle Scholar
  132. Li, J. and J. Kimura. Translocation mechanism of Na-Ca exchange in single cardiac cells of guinea pig. J. Gen. Physiol. 96: 777–788, 1990.Google Scholar
  133. Lindemann, J.P. and A.M. Watanabe. Muscarinic cholinergie inhibition of beta-adrenergic stimulation of phospholamban phosphorylation and Ca2+ transport in guinea pig ventricles. J. Biol. Chem. 260: 1312213129, 1985.Google Scholar
  134. Lindemann, J.P., L.R. Jones, D.R. Hathaway, B.G. Henry and A. Watanabe. Beta-adrenergic stimulation of phospholamban phosphorylation and Ca2+ ATPase activity in guinea pig ventricles. J. Biol. Chem. 258: 464471, 1983.Google Scholar
  135. Ma, J., M.Fill, C.M. Knudson, K.P. Campbell and R. Coronado. Ryanodine receptor of skeletal muscle is a gap junction-type channel. Science 242: 99–102, 1988.PubMedCrossRefGoogle Scholar
  136. MacLennan, D.H. and P.T.S. Wong. Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc. Natl. Asad. Sci. USA 68: 1231–1235, 1971.CrossRefGoogle Scholar
  137. MacLennan, D.H., C.C. Yip, G.H. Iles and P. Seeman. Isolation of sarcoplasmic reticulum proteins. Cold Spring Harbor Symp. Quant. Bio137: 469–478, 1972.Google Scholar
  138. MacLennan, D.H., C.J. Brandt, K. Bozena and M. Green. Amino-acid sequence of Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature 316: 696–700, 1985.Google Scholar
  139. MacLennan, D.H., C.J. Brandi, B. Korczak and N.M. Green. Calcium ATPases: Contribution of molecular genetics to our understanding of structure and function. In: Proteins of Excitable Membranes B. Hille and D.M Frambrough, John Wiley & Sons, Inc., New York, pp. 287–300, 1987.Google Scholar
  140. MacLeod, K.T. and D.M. Bers. The effects of rest duration and ryanodine on extracellular calcium concentration in cardiac muscle from rabbits. Am. J. Physiol. 253: C398–C407, 1987.PubMedGoogle Scholar
  141. Marks, A.P., P. Tempst, K.S. Hwang, M.B. Taubman, M. Inui, C. Chadwick, S. Fleischer and B. Nadal-Ginard. Molecular cloning and characterization of the ryanodine receptor/junctional channel complex cDNA from skeletal muscle sarcoplasmic reticulum. Proc. Natl. Acad. Sci. USA 86: 8683–8687, 1989.PubMedCrossRefGoogle Scholar
  142. Martonosi, A.N. and T.J. Beeler. Mechanism of C+ transport by sarcoplasmic reticulum. In: Handbook of Physiology, Section 10: Skeletal Muscle L.D. Peachey, R.H. Adrian and S.R. Geiger, American Physiological Society, Bethesda, MD, pp. 417–485, 1983.Google Scholar
  143. Mclvor, M.E., C.H. Orchard, and E.G. Lakatta. Dissociation of changes in apparent myofibrillar Ca2+ sensitivity and twitch relaxation induced by adrenergic and cholinergic stimulation in isolated ferret cardiac muscle. J. Gen. Physiol. 92: 509–529, 1988.CrossRefGoogle Scholar
  144. Meissner, G. Isolation and characterization of two types of sarcoplasmic reticulum vesicles. Biochim. Biophys. Acta 389: 51–68, 1975.Google Scholar
  145. Meissner, G. Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. J. Biol. Chem. 261: 6300–6306, 1986a.PubMedGoogle Scholar
  146. Meissner, G. Permeability of sarcoplasmic reticulum to monovalent ions. In: Sarcoplasmic Reticulum in Muscle Physiology Vol. 1. M.L. Entman and W.B. Van Winkle, CRC Press, Inc., Boca Raton, FL, pp. 21–30, 1986b.Google Scholar
  147. Meissner, G. and J.S. Henderson. Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mgt+, adenine nucleotide, and calmodulin. J. Biol. Chem. 262: 3065–3073, 1987.PubMedGoogle Scholar
  148. Mickelson, J.R., E.M. Gallant, LA. Litterer, K.M. Johnson, W.E. Rempel and C.F. Louis. Abnormal sarcoplasmic reticulum ryanodine receptor in malignant hyperthermia. J. Biol. Chem. 263: 9310–9315, 1988.Google Scholar
  149. Mickelson, J.R., LA. Litterer, B.A. Jacobson and C.F. Louis. Stimulation and inhibition of [H1ryanodine binding to sarcoplasmic reticulum from malignant hyperthermia susceptible pigs. Arch. Biochem. Biophys. 278: 251–257, 1990.Google Scholar
  150. Mignery, G.A., T.C. Sudhof, K. Takei and P. De Camilli. Putative receptor for inositol 1,4,5-triphosphate similar to ryanodine receptor. Nature 342: 192–195.Google Scholar
  151. Mitchell, R.D., H.K.B. Simmerman and L.R. Jones. Ca2+ binding effects on protein conformation and protein interactions of canine cardiac calsequestrin. J. Biol. Chem. 263: 1376–1381, 1988.PubMedGoogle Scholar
  152. Moravec, C.S. and M. Bond. X-ray microanalysis of subcellular calcium distribution in contracted and relaxed cardiac muscle. Biophvs. J. 57: 503a, 1990.Google Scholar
  153. Movesian, M.A., M. Nishikawa and R.S. Adelstein. Phosphorylation of phospholamban by Ca2+-activated, phospholipid-dependent protein kinase. Stimulation of cardiac sarcoplasmic reticulum Ca2+ uptake. J. Biol. Chem. 259: 8029–8032, 1984.Google Scholar
  154. Nagasaki, K. and S. Fleischer. Modulation of the calcium release channel of sarcoplasmic reticulum by adriamycin and other drugs. Cell Calcium 10: 63–70, 1989.PubMedCrossRefGoogle Scholar
  155. Nakai, J., T. Imagawa, Y. Hakamata, M. Shigekawa, H. Takeshima and S. Numa. Primary structure and functional expression from cDNA of cardiac muscle ryanodine receptor/calcium release channel. FEBS. Lett. 271: 169177,1990.[6]Google Scholar
  156. Nakamura, Y., J. Kobayashi, J. Gilmore, M. Mascal, K.L. Rinehart, Jr., H. Nakamura and Y. Ohizumi. Bromoeudistomin D, a novel inducer of calcium release from fragmented sarcoplasmic reticulum that causes contractions of skinned muscle fibers. J. Biol. Chem. 261: 4139–4142, 1986.PubMedGoogle Scholar
  157. Nayler, W.G., P. Daile, D. Chipperfield and K. Gan. Effect of ryanodine on calcium in cardiac muscle. Am. J. Physiol. 219: 1620–1626, 1970.Google Scholar
  158. Nelson, T.E. Abnormality in calcium release from skeletal sarcoplasmic reticulum of pigs susceptible to malignant hyperthermia. J. Clin. Invest. 72: 862–870, 1983.CrossRefGoogle Scholar
  159. Niggli, E. Mechanical parameters determined in dispersed ventricular heart cells. Experientia 43: 1150–1153, 1987.Google Scholar
  160. O’Neill, S.C., P. Donoso and D.A. Eisner. The role of [Cand [Ca2+]-sensitization in the caffeine contracture of rat myocytes: Measurement of [Ca2+]i and [caffeine]i. J. Physiol. 425: 55–70, 1990a.PubMedGoogle Scholar
  161. Ohnishi, S.T. A method for studying the depolarization-induced calcium release from fragmented sarcoplasmic reticulum. J. Biochem. 86: 1147–1150, 1979.PubMedGoogle Scholar
  162. Orchard, C.H. and J.C. Kentish. Effects of changes of pH on the contractile function of cardiac muscle. Am. J. Physiol. 258: C967–C981, 1990.Google Scholar
  163. Orchard, C.H., D.A. Eisner and D.G. Allen. Oscillations of intracellular Ca2+ in mammalian cardiac muscle. Nature 304: 735–738, 1983.Google Scholar
  164. Ostwald, T.J. and D.H. MacLennan. Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J. Biol. Chem. 249: 974–979, 1974.Google Scholar
  165. Otsu, K., H.F. Willard, V.J. Khana, F. Zorzato, N.M. Green and D.H. MacLennan. Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. J. Biol. Chem. 265: 13713–13720, 1990.Google Scholar
  166. Palade, P. Drug-induced Ca2+ release from isolated sarcoplasmic reticulum. I. Use of pyrophosphate to study caffeine-induced Ca2+ release. J. Biol. Chem. 262: 6135–6141, 1987a.Google Scholar
  167. Palade, P. Drug-induced Ca2+ release from isolated sarcoplasmic reticulum. II. Releases involving a Ca2+induced Ca2+ release channel. J. Biol. Chem. 262: 6142–6148, 1987b.PubMedGoogle Scholar
  168. Palade, P. Drug-induced Ca2+ release from isolated sarcoplasmic reticulum. III. Block of Ca2+-induced Ca2+ release by inorganic polyamines.. J. Biol. Chem. 262: 6149–6154, 1987e.PubMedGoogle Scholar
  169. Palade, P., C. Dettbarn, D. Brunder, P. Stein and G. Hals. Pharmacology of calcium release from sarcoplasmic reticulum. J. Bioenerg. Biomemb. 21: 295–320, 1989.CrossRefGoogle Scholar
  170. Palmer, R.F. and V.A. Posey. Ion effects on calcium accumulation by cardiac sarcoplasmic reticulum. J. Gen. Physiol. 50: 2085, 1967.Google Scholar
  171. Pessah, I.N., A.L. Waterhouse and J.E. Casida. The calcium-ryanodine receptor complex of skeletal and cardiac muscle. Biochem. Biophys. Res. Comm. 128: 449–456, 1985.Google Scholar
  172. Pierce, G.N., T.L. Rich and G.Â. Langer. Trans-sarcolemmal Ca2+ movements associated with contraction of the rabbit right ventricular wall. Circ. Res. 61: 805–814, 1987.PubMedCrossRefGoogle Scholar
  173. Pizarró, G., L. Cleemann and M. Morad. Optical measurement of voltage-dependent Ca2+ influx in frog heart. Proc. Natl. Acad. Sci. USA 82: 1864–1868, 1985.CrossRefGoogle Scholar
  174. Potter, J.D., and J.D. Johnson. Troponin. In: Calcium and Function Vol II, W. Cheung ed., Academic Press, New York, pp. 145–173, 1982.Google Scholar
  175. Prod’hom, B., D. Pietrobon and P. Hess. Direct measurement of proton transfer rates to a group controlling the dihydropyridine-sensitive Ca2+ channel. Nature 329: 243–246, 1987.Google Scholar
  176. Pytkowski, B. Rest-and stimulation-dependent changes in exchangeable calcium content in rabbit ventricular myocardium. Bas. Res. Cardiol. 84: 22–29, 1989.CrossRefGoogle Scholar
  177. Pytkowski, B., B. Lewartowski, A. Prokopczuk, K. Zdanowski and K. Lewandowska. Excitation-and rate-dependent shifts of Ca in guinea-pig ventricular myocardium. Pflügers Arch. 398: 103–113, 1983.Google Scholar
  178. Raffaeli, S., M.C. Capogrossi, H.A. Spurgeon, M.D. Stern and E.G. Lakatta. Isoproterenol abolishes negative staircase of Ca2+ transient and twitch in single rat cardiac myocytes. Circulation 76: IV–212, 1987.Google Scholar
  179. Rardon, D.P., D.C. Cefali, R.D. Mitchell, S.M. Seiler and L.R. Jones. High molecular weight proteins purified from cardiac junctional sarcoplasmic reticulum vesicles are ryanodine-sensitive calcium channels. Circ. Res. 64: 779–789, 1989.Google Scholar
  180. Ríos, E. and G. Brum. Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature 325: 717–720, 1987.Google Scholar
  181. Ríos, E. and G. Pizarró. Voltage sensors and calcium channels of excitation-contraction coupling. News Physiol. Sci. 3: 223–227, 1988.Google Scholar
  182. Rogers, T.B., S.T. Gaa, C. Massey and A. Dosemeci. Protein kinase C inhibits Car+ accumulation in cardiac sarcoplasmic reticulum. J. Biol. Chem. 265: 4302–4308, 1990.Google Scholar
  183. Rousseau, E. and G. Meissner. Single cardiac sarcoplasmic reticulum Ca2+-release channel: Activation by caffeine. Am. J. Physiol. 256: H328–11333, 1989.PubMedGoogle Scholar
  184. Rousseau, E. and J. Pinkos. pH modulates conducting and gating behaviour of single calcium release channels. Pflügers Arch. 415: 645–647, 1990.Google Scholar
  185. Rousseau, E., J.S. Smith, J.S. Henderson and G. Meissner. Single channel and 45Ca2+ flux measurements of the cardiac sarcoplasmic reticulum calcium channel. Biophvs. J. 50: 1009–1014, 1986.Google Scholar
  186. Rousseau, E., J.S. Smith and G. Meissner. Ryanodine modifies conductance and gating behavior of single Ca2+ release channel. Am. J. Physiol. 253: C364–C368, 1987.PubMedGoogle Scholar
  187. Rüegg, J.C. Effects of new inotropic agents on Ca++ sensitivity of contractile proteins. Circ. 73: (Suppl III), III–73, 1986.Google Scholar
  188. Saito, A., S. Seiler, A. Chu and S. Fleischer. Preparation and morphology of SR terminal cisternae from rabbit skeletal muscle. J. Cell Biol. 99: 875–885, 1984.PubMedCrossRefGoogle Scholar
  189. Saito, A., M. Inui, M. Radermacher, J. Frank and S. Fleischer. Ultrastructure of the calcium release channel of sarcoplasmic reticulum. J. Cell Biol. 107: 211–219, 1988.Google Scholar
  190. Sakai, T. The effect of temperature and caffeine on the action of the contractile mechanism in striated muscle fibres. Jikeikea Med. J. 12: 88–102, 1965.Google Scholar
  191. Salama, G. and J. Abramson. Silver ions trigger Caz+ release by acting at the apparent physiological release site in sarcoplasmic reticulum. J. Biol. Chem. 259: 13363–13360, 1984.Google Scholar
  192. Scherer, N.M. and J.E. Ferguson. Inositol 1,4,5-triphosphate is not effective in releasing calcium from skeletal sarcoplasmic reticulum microsomes. Biochem. Biophys. Res. Commun. 128: 1064–1070, 1985.Google Scholar
  193. Scott, B.T., H.K.B. Simmerman, J.H. Collins, B. Nadal-Ginard and L.R. Jones. Complete amino acid sequence of canine cardiac calsequestrin deduced by cDNA cloning. J. Biol. Chem. 263: 8958–8964, 1988.Google Scholar
  194. Seiler, S., A.D. Wegener, D.D. Whang, D.R. Hathaway and L.R. Jones. High molecular weight proteins in cardiac and skeletal muscle junctional sarcoplasmic reticulum vesicles bind calmodulin, are phosphorylated, and are degraded by Cat+-activated protease. J. Biol. Chem. 259: 8550–8557, 1984.PubMedGoogle Scholar
  195. Shamoo, A.E., I.S. Ambudkar, M.S. Jacobson and J. Bidlack. Regulation of calcium transport in cardiac sarcoplasmic reticulum. Curr. Top. Memb. Transp. 25: 131–145, 1985.CrossRefGoogle Scholar
  196. Shattock, M.J. and D.M. Bers. Rat vs. rabbit ventricle: Ca flux and intracellular Na assessed by ion-selective microelectrodes. Am. J. Physiol. 256: C813–C822, 1989.PubMedGoogle Scholar
  197. Shigekawa, M., J.-A.M. Finegan and A.M. Katz. Calcium transport ATPase of canine cardiac sarcoplasmic reticulum. J. Biol. Chem. 251: 6894–6900, 1976.Google Scholar
  198. Simon, B.J., M.G. Klein and M.F. Schneider. Caffeine slows turn-off of calcium release in voltage clamped skeletal muscle fibers. Biophys. J. 55: 793–797, 1989.Google Scholar
  199. Sitsapesan, R., RA.P. Montgomery, K.T. MacLeod and A.J. Williams. Sheep cardiac sarcoplasmic reticulum calcium-release channels: Modification of conductance and gating by temperature. J. Physiol. 434: 469–488, 1991.PubMedGoogle Scholar
  200. Sjöstrand, F.S., E. Andersson-Cedergren and M.M. Dewey. The ultrastructure of the intercalated disc of frog, mouse and guinea pig cardiac muscle. J. Ultrastruct. Res. 1: 271–287, 1958.PubMedCrossRefGoogle Scholar
  201. Smith, J.B., L. Smith and B.L. Higgins. Temperature and nucleotide dependence of calcium release by myoinositol 1,4,5-trisphosphate in cultured vascular smooth muscle cells. J. Biol. Chem. 259: 14413–14416, 1985.Google Scholar
  202. Smith, J.S., R. Coronado and G. Meissner. Single channel measurements of the calcium release channel from skeletal muscle sarcoplasmic reticulum. J. Gen. Physiol. 88: 573–588, 1986a.Google Scholar
  203. Smith, J.S., R. Coronado and G. Meissner. Single-channel calcium and barium currents of large and small conductance from sarcoplasmic reticulum. Biophys. J. 50: 921–928, 1986b.Google Scholar
  204. Smith, J.S., T. Imagawa, J. Ma, M. Foil, K.P. Campbell and R. Coronado. Purified ryanodine receptor from rabbit skeletal muscle is the calcium-release channel of sarcoplasmic reticulum. J. Gen. Physiol. 92: 1–26, 1988.Google Scholar
  205. Smith, J.S., E. Rousseau and G. Meissner. Calmodulin modulation of single sarcoplasmic reticulum Ca release channels from cardiac and skeletal muscle. Circ. Res. 64: 352–359, 1989.PubMedCrossRefGoogle Scholar
  206. Solaro, R.J. and F.N. Briggs. Estimating the functional capabilities of sarcoplasmic reticulum in cardiac muscle. Circ. Res 34: 531–540, 1974.Google Scholar
  207. Somlyo, A.V., H. Shuman and A.P. Somlyo. Composition of sarcoplasmic reticulum in situ by electron probe X-ray microanalysis. Nature 268: 556–558, 1977a.PubMedCrossRefGoogle Scholar
  208. Somlyo, A.V., H. Shuman and A.P. Somlyo. Elemental distribution in striated muscle and the effects of hypertonicity. Electron probe analysis of cryosections. J. Cell Biol. 74: 828–857, 1977b.PubMedCrossRefGoogle Scholar
  209. Somlyo, A.V. and Somlyo, A.P. Electron optical studies of calcium and other ion movements in the sarcoplasmic reticulum in situ. In: Sarcoplasmic Reticulum in Muscle Physiology Vol. 1., M.L. Entman and W.B. Van Winkle, CRC Press, Inc., Boca Raton, FL, pp. 31–50, 1986.Google Scholar
  210. Suarez-Isla, BA., C. Orozco, P.F. Heller and J.P. Froehlich. Single calcium channels in native sarcoplasmic reticulum membranes from skeletal muscle. Proc. Natl. Acad. Sci. USA 83: 7741–7745, 1986.Google Scholar
  211. Suarez-Isla, B.A., V. Irribarra, A. Oberhauser, L. Larralde, R. Bull, C. Hidalgo and E. Jaimovich. Inositol(1,4,5)trisphosphate activates a calcium channel in isolated sarcoplasmic reticulum membranes. Biophys. J. 54: 737–741, 1988.PubMedCrossRefGoogle Scholar
  212. Supattapone, S., P.F. Worley, J.M. Baraban and S.H. Snyder. Solubilization, purification, and characterization of an inositol triphosphate receptor. J. Biol. Chem. 263: 1530–1534, 1988.PubMedGoogle Scholar
  213. Sutko, J.L. and J.L. Kenyon. Ryanodine modification of cardiac muscle responses to potassium free solutions. Evidence for inhibition of sarcoplasmic reticulum calcium release. J. Gen. Physiol. 82: 385–404, 1983.Google Scholar
  214. Sutko, J.L. and J.T. Willerson. Ryanodine alteration of the contractile state of rat ventricular myocardium. Comparison with dog, cat and rabbit ventricular tissues. Circ. Res. 46: 332–343, 1980.PubMedCrossRefGoogle Scholar
  215. Sutko, J.L., K. Ito and J.L. Kenyon. Ryanodine: A modifier of sarcoplasmic reticulum calcium release. Biochemical and functional consequences of its actions on striated muscle. Fed. Proc. 44: 2984–2988, 1985.PubMedGoogle Scholar
  216. Tada, M. and A.M. Katz. Phosphorylation of the sarcoplasmic reticulum and sarcolemma. Ann. Rev. Physiol. 44: 401–423, 1982.CrossRefGoogle Scholar
  217. Tada, M., MA. Kirchberger, D.I. Repke and A.M. Katz. The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3’:5’-monophosphate-dependent protein kinase. J. Biol. Chem. 249: 6174–6180, 1974.PubMedGoogle Scholar
  218. Tada, M., T. Yamamoto and Y. Tonomura. Molecular mechanism of active calcium transport by sarcoplasmic reticulum. Physiol. Rev. 58: 1–79, 1978.Google Scholar
  219. Tada, M., M. Yamada, M. Kadoma, M.Inui and F. Ohmori. Calcium transport by cardiac sarcoplasmic reticulum and phosphorylation of phospholamban. M.l. Cell. Biochem. 46: 74–95, 1982.Google Scholar
  220. Takasago, T., T. Imagawa and M. Shigekawa. Phosphorylation of the cardiac ryanodine receptor by cAMPdependent protein kinase. J. Biochem. 106: 872–877, 1989.PubMedGoogle Scholar
  221. Takeshima, H., S. Hishimura T. Matsumoto, H. Ishida, K. Kangawa, N. Minamino, H. Matsuo, M. Ueda, M. Hanaoka, T. Hirose, and S. Numa. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339: 439–445, 1989.PubMedCrossRefGoogle Scholar
  222. Tanford, C. Mechanism of free energy coupling in active transport. Ann. Rev. Biochem. 52: 379–409, 1983.CrossRefGoogle Scholar
  223. Tate, CA., R.J. Bick, A. Chu, W.B. Van Winkle and M.L. Entman. Nucleotide specificity of canine cardiac sarcoplasmic reticulum. GTP-induced calcium accumulation and GTPase activity. J. Biol. Chem. 260: 9618–9623, 1985.PubMedGoogle Scholar
  224. Tate, CA., R.J. Bick, S.L. Blaylock, K.A. Youker, N.M. Scherer and M.L. Entman. Nucleotide specificity of canine cardiac sarcoplasmic reticulum. Differential alteration of enzyme properties by detergent treatment. J. Biol. Chem. 264: 7809–7813, 1989.Google Scholar
  225. Trimm, J.L., G. Salama and J. Abramson. Sulfhydryl oxidation induces rapid calcium release from sarcoplasmic reticulum vesicles. J. Biol. Chem. 261: 16092–16098, 1986.PubMedGoogle Scholar
  226. Van Winkle, W.B. Calcium release from skeletal muscle sarcoplasmic reticulum: Site of action of dantrolene sodium ? Science 193: 1130–1131, 1976.PubMedCrossRefGoogle Scholar
  227. Verjovski-Almeida, S. and G. Inesi. Fast-kinetic evidence for an activating effect of ATP on the Ca transport of sarcoplasmic reticulum ATPase. J. Biol. Chem. 254: 18–21, 1979.[6]Google Scholar
  228. Volpe, P., G. Salviati, F. De Virgilio and T. Pozzan. Inositol 1,4,5-triphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle. Nature 316: 347–349, 1985.PubMedCrossRefGoogle Scholar
  229. Wagenknecht, T., R. Grassucci, J. Frank, A. Saito, M. Inui and S. Fleischer. Three-dimensional architecture of the calcium channel/foot structure of sarcoplasmic reticulum. Nature 338: 167–170, 1989.Google Scholar
  230. Walker, J.W., A.V. Somlyo, Y.E. Goldman, A.P. Somlyo and D.R. Trentham. Kinetics of smooth and skeletal muscle activation by laser pulse photolysis of caged inositol 1,4,5-triphosphate. Nature 327: 249–252, 1987.PubMedCrossRefGoogle Scholar
  231. Walsh, L.G. and J.McD. Tormey. Rest dependent Ca loss from sarcoplasmic reticulum of intact cardiac muscle. Biophys. J. 55: 485a, 1989.Google Scholar
  232. Weber, A. and R. Herz. The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum. J. Gen. Physiol. 52: 750–759, 1968.PubMedCrossRefGoogle Scholar
  233. Wegener, A.D., H.K.B. Simmerman, J.P. Lindemann and L.R. Jones. Phospholamban phosphorylation in intact ventricles. Phosphorylation of serine 16 and threonine 17 in response to ß-adrenergic stimulation. J. Biol. Chem. 264: 11468–11474, 1989.PubMedGoogle Scholar
  234. Wei, J.-W. and P.V. Sulakhe. Properties of the muscarinic cholinergic receptors in rat atrium. Naunyn Schmiedeberg’s Arch. Pharmacol. 309: 259–269, 1979.CrossRefGoogle Scholar
  235. Weiss, J., G.S. Couper, B. Hiltbrand and K.I. Shine. Role of acidosis in early contractile dysfunction during ischemia: Evidence from pH, measurements. Am. J. Physiol. 247: H760–H767, 1984.Google Scholar
  236. Wendt, I.R. and D.G. Stephenson. Effects of caffeine on Ca-activated force production in skinned cardiac and skeletal muscle fibres of the rat. Pflügers Arch. 398: 210–216, 1983.Google Scholar
  237. Wendt-Gallitelli, M.S. and G. Isenberg. X-ray microanalysis of single cardiac myocytes frozen under voltage-clamp conditions. M. J. Physiol. 256: H574–H583, 1989.Google Scholar
  238. Wheeler-Clark, E.S. and J.McD. Tormey. Electron probe X-ray microanalysis of sarcolemma and junctional sarcoplasmic reticulum in rabbit papillary muscles: Low sodium-induced calcium alterations. Circ. Res. 60: 246–250, 1987.Google Scholar
  239. Williams, A.J. and S.R.M. Holmberg. Sulmazole (AR-L 115BS) activates the sheep cardiac muscle sarcoplasmic reticulum calcium-release channel in the presence and absence of calcium. J. Memb. Biol. 115: 167–178, 1990.CrossRefGoogle Scholar
  240. Williams, R.S. and R.J. Lefkowitz. Alpha-adrenergic receptors in rat myocardium. Identification by binding of [3H]dihydroergocryptine, Circ. Res. 43: 721–727, 1978.Google Scholar
  241. Williams, J.S., I.L. Grupp, G. Grupp, P.L. Vaghy, L. Dumont and A. Schwartz. Profile of the oppositely acting enantiomers of the dihydropyridine 202–791 in cardiac preparations: Receptor binding, electrophysiological, and pharmacological studies. Biochem. Biophys. Res. Commun. 131: 13–21, 1985.Google Scholar
  242. Zaidi, N.F., C.F. Lagenaur, R.J. Hilkert, H. Xiong, J.J. Abramson and G. Salama. Disulfide linkage of biotin identifies a 106-kDa Cat+ release channel in sarcoplasmic reticulum. J. Biol. Chem. 264: 21737–21646, 1989.Google Scholar
  243. Zorzato, F., G. Salviati, T. Facchinetti and P. Volpe. Doxorubicin induces calcium release from terminal cisternae of skeletal muscle. J. Biol. Chem. 260: 7349–7355, 1985.Google Scholar
  244. Zorzato, F., J. Fujii, K. Otsu, M. Phillips, N.M. Green, FA. Lai, G. Meissner and D.H. MacLennan. Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 265: 2244–2256, 1990.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Donald M. Bers
    • 1
  1. 1.Department of PhysiologyLoyola University Medical SchoolMaywoodUSA

Personalised recommendations