Major Cellular Structures Involved in Excitation-Contraction Coupling

  • Donald M. Bers
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 122)


Numerous cellular structures are involved with the process of excitation-contraction coupling (E-C coupling) in cardiac muscle cells. This chapter serves to introduce some of these components from an ultrastructural perspective and each general component will be discussed in greater detail in subsequent chapters.


Sarcoplasmic Reticulum Thick Filament Purkinje Fiber Mammalian Skeletal Muscle Sarcoplasmic Reticulum Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almers, W. and C. Stirling. Distribution of transport proteins over animal cell membranes. J. Memb. Biol. 77: 169–186, 1984.Google Scholar
  2. Almers, W., R. Fink and P.T. Palade. Calcium depletion in frog muscle tubules: The decline of calcium current under maintained depolarization. J. Physiol. 312: 177–207, 1981.PubMedGoogle Scholar
  3. Baskin, RJ. and D.W. Deamer. Comparative ultrastructure and calcium transport in heart and skeletal muscle microsomes. J. Cell. Biol. 43: 610–617, 1969.Google Scholar
  4. Bennett, H.S. Morphological aspects of extracellular polysaccharides. J. Histochem. Cytochem. 11: 14, 1963.CrossRefGoogle Scholar
  5. Bers, D.M. Ca influx and sarcoplasmic reticulum Ca release in cardiac muscle activation during post-rest recovery. Am. J. Physiol. 248: H366–H381, 1985.Google Scholar
  6. Bers, D.M., K.D. Philipson and G.A. Langer. Cardiac contractility and sarcolemmal calcium binding in several cardiac preparations. Am. J. Physiol. 240: H576–H583, 1981.PubMedGoogle Scholar
  7. Beyer, E.D., D. Paul and D.A. Goodenough. Connexin43: A protein from rat heart homologous to a gap junction protein from liver. J. Cell Biol. 105: 2621–2629, 1987.PubMedCrossRefGoogle Scholar
  8. Bhojani, LH. and R.A. Chapman. The effects of bathing sodium ions upon the intracellular sodium activity in calcium-free media and the calcium paradox of isolated ferret ventricular muscle. J. Mol. Cell. Cardiol. 22: 507–522, 1990.PubMedCrossRefGoogle Scholar
  9. Blinks, J.R., Y.-D. Cai and N.K.M. Lee. Inositol 1,4,5-trisphosphate causes calcium release in frog skeletal muscle only when transverse tubules have been interrupted. J. Physiol. 394: 23P, 1987.Google Scholar
  10. Block, B.A., T. Imagawa, K.P. Campbell and C. Franzini-Armstrong. Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J. Cell Biol. 107: 2587–2600, 1988.PubMedCrossRefGoogle Scholar
  11. Bossen, E.H. and J.R. Sommer. Comparative stereology of the lizard and frog myocardium. Tissue Cell 16: 173178, 1984.Google Scholar
  12. Bossen, E.H., J.R. Sommer and RA. Waugh. Comparative stereology of the mouse and finch left ventricle. Tissue Cell 10: 773–784, 1978.PubMedCrossRefGoogle Scholar
  13. Bossen, E.H., J.R. Sommer and R.A. Waugh. Comparative stereology of mouse atria. Tissue Cell 13: 71–77, 1981.CrossRefGoogle Scholar
  14. Brandt, N. Identification of two populations of cardiac microsomes with nitrendipine receptors: Correlation of the distribution of dihydropyridine receptors with organelle specific markers. Archiv Biochem. Biophys 242: 306–319, 1985.Google Scholar
  15. Bridge, J.H.B., M.M. Bersohn, F. Gonzalez and J.B. Bassingthwaighte. Synthesis and use of radio cobaltic EDTA as an extracellular marker in rabbit heart. Am. J. Physiol. 242: H671–H676, 1982.PubMedGoogle Scholar
  16. Butcher, R.W. and E.W. Sutherland. Adenosine 3’,5’-phosphate in biological materials. I. Purification and properties of cyclic 3’,S’-nucleotide phosphodiesterase and the use of this enzyme to characterize adenosine 3’,5’-phosphate in human urine. J. Biol. Chem. 237: 1244–1250, 1962.Google Scholar
  17. Caldwell, J.J.S. and A.H. Caswell. Identification of a constituent of the junctional feet linking the terminal cisternae to transverse tubules in skeletal muscle. J. Cell Biol. 93: 543–550, 1982.Google Scholar
  18. Chapman, R.A. and J. Tunstall. The calcium paradox of the heart. Prog. Biophys. Molec. Biol. 50:57–96, 1987.Google Scholar
  19. Chen, Li, G.E. Goings, J. Upshaw-Earley and E. Page. Cardiac gap junctions and gap junction-associated vesicles: Ultrastructural comparison of in situ negative staining with conventional positive staining. Circ. Res. 64: 501–514, 1989.CrossRefGoogle Scholar
  20. de la Pena, P. and J.P. Reeves. Inhibition and activation of sodium-calcium exchange activity in cardiac sarcolemmal vesicles by quinacrine. Am. J. Physiol. 252: C24–C29, 1987.Google Scholar
  21. De Mello, W.C. Effect of intracellular injection of calcium and strontium on cell communication in heart. J. Physiol. 250: 231–245, 1975.PubMedGoogle Scholar
  22. Dolber, P.C. and J.R. Sommer. Corbular sarcoplasmic reticulum of rabbit cardiac muscle. J. Ultrastruct. Res. 87: 190–196, 1984.PubMedCrossRefGoogle Scholar
  23. Dolber, P.C. and J.R. Sommer. Corbular sarcoplasmic reticulum of rabbit cardiac muscle. J. Ultrastruct. Res. 87: 190–196, 1984.PubMedCrossRefGoogle Scholar
  24. Doyle, D.D., T.J. Kamp, H.C. Palfrey, R.J. Miller and E. Page. Separation of cardiac plasmalemma into cell surface and T-tubular components. J. Biol. Chem. 261: 6556–6563, 1986.PubMedGoogle Scholar
  25. Eisenberg, B.R. Quantitative ultrastructure of mammalian skeletal muscle. In: Handbook of Physiology. Section 10. Skeletal Muscle L.D. Peachey, ed., Am. Physiol. Soc., Bethesda, MD. 73–112, 1983.Google Scholar
  26. Eisenberg, B.R. and I.S. Cohen. The ultrastructure of the cardiac Purkinje strand in the dog: A morphometric analysis. Proc. Roy. Soc. Lond. B 217: 191–213, 1983.CrossRefGoogle Scholar
  27. Eisenberg, B.R. and A.M. Kuda. Stereological analysis of mammalian skeletal muscle. II. White vastus muscle of the adult guinea pig. J. Ultrastruct. Res. 51: 176–187, 1975.Google Scholar
  28. Eisenberg, B.R. and A.M. Kuda. Discrimination between fiber populations in mammalian skeletal muscle by using ultrastructural parameters. J. Ultrastruct. Res. 54: 76–88, 1976.PubMedCrossRefGoogle Scholar
  29. Eisenberg, B.R., A.M. Kuda and J.B. Peter. Stereological analysis of mammalian skeletal muscle. I. Soleus muscle of the adult guinea pig. J. Cell Biol. 60: 732–754, 1974.Google Scholar
  30. Fabiato, A. Calcium release in skinned cardiac cells: Variations with species, tissues, and development. Fed. Proc. 41: 2238–2244, 1982.Google Scholar
  31. Fabiato, A. and F. Fabiato. Calcium induced release of calcium from the sarcoplasmic reticulum and skinned cells from adult human, dog, cat, rabbit, rat and frog hearts and from fetal and newborn rat ventricles. Ann. N.Y. Arad. Sci. 307: 491–522, 1978b.CrossRefGoogle Scholar
  32. Fawcett, D.W. and N.S. McNutt. The ultrastructure of the cat myocardium. I. Ventricular papillary muscle. J. Cell Biol. 42: 1–45, 1969.PubMedCrossRefGoogle Scholar
  33. Flagg-Newton, J.L., I. Simpson and W.R. Loewenstein. Permeability of the cell-to-cell membrane channels in mammalian cell junction. Science 205: 404–407, 1979.Google Scholar
  34. Fleischer, S. and M. Inui. Biochemistry and biophysics of excitation-contraction coupling. Ann. Rev. Biophys. Chem. 18: 333–364, 1989.CrossRefGoogle Scholar
  35. Flitney, F.W. and J. Singh. Evidence that cyclic GMP may regulate cyclic AMP metabolism in the isolated frog ventricle. J. Mol. Cell. Cardiol. 13: 963–979, 1981.CrossRefGoogle Scholar
  36. Flockerzi, V., H.-J. Oeken, F. Hofmann, D. Pelzer, A Cavalie and W. Trautwein. Purified dihydropyridine-binding site from skeletal muscle t-tubules is a functional calcium channel. Nature 323: 66–68, 1986.Google Scholar
  37. Forbes, M.S. and E.E. Van Niel. Membrane systems of guinea pig myocardium: Ultrastructure and morphometric studies. Anat. Rec. 222: 362–379, 1988.CrossRefGoogle Scholar
  38. Frank, J.S. Ultrastructure of the unfixed myocardial sarcolemma and cell surface. In: Calcium and the Heart GA. Langer, cd., Raven Press, New York, pp 1–25, 1990.Google Scholar
  39. Frank, J.S. and G.A. Langer. The myocardial interstitium: Its structure and its role in ionic exchange. J. Cell Biol. 60: 586–601, 1974.PubMedCrossRefGoogle Scholar
  40. Frank, J.S., G.A. Langer, L.M. Nudd and K. Seraydarian. The myocardial cell surface, its histochemistry, and the effect of sialic acid and calcium removal on its structure and cellular ionic exchange. Circ. Res. 41: 702–714, 1977.PubMedCrossRefGoogle Scholar
  41. Frank, J.S., T.L. Rich, S. Beydler and M. Kreman. Calcium depletion in rabbit myocardium. Circ. Res. 51: 117130, 1982.Google Scholar
  42. Frank, M., I. Albrecht, W.W. Sleator and R.B. Robinson. Stereological measurements of atrial ultrastructures in the guinea-pig. Experientia 31: 5, 1974.Google Scholar
  43. Franzini-Armstrong, C. Studies of the triad. I. Structure of the junction in frog twitch fibers. J. Cell Biol. 47: 488–499, 1970.Google Scholar
  44. Franzini-Armstrong, C. Membrane particles and transmission at the triad. Fed. Proc. 34: 1382–1389, 1975.Google Scholar
  45. Henderson, D., H. Eibl and K. Weber. Structure and biochemistry of mouse hepatic gap junctions. J. Mol. Biol. 132: 192–218, 1979.CrossRefGoogle Scholar
  46. Hertzberg, E.L. and N.B. Gilula. Isolation and characterization of gap junctions from rat liver. J. Biol. Chem. 254: 2138–2147, 1979.Google Scholar
  47. Imagawa, T., J.S. Smith, R. Coronado and K.P. Campbell. Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+- permeable pore of the calcium release channel. J. Biol. Chem. 262: 16636–16643, 1987.PubMedGoogle Scholar
  48. Inesi, G. Mechanism of calcium transport. Ann. Rev. Physiol. 47: 573–601, 1985.CrossRefGoogle Scholar
  49. Inesi, G. Characterization of partial reactions in the catalytic and transport cycle of sarcoplasmic reticulum ATPase. In: Proteins of Excitable Membranes B. Hille and D.M Frambrough, John Wiley & Sons, Inc., New York, pp. 231–255, 1987.Google Scholar
  50. Inui, M., B.K. Chamberlain, A. Saito and S. Fleischer. The nature of the modulation of Ca2+ transport as studied by reconstitution of cardiac sarcoplasmic reticulum. J. Biol. Chem. 261: 1794–1800, 1986.PubMedGoogle Scholar
  51. Inui, M., A. Saito and S. Fleischer. Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J. Biol. Chem. 262: 1740–1747, 1987a.PubMedGoogle Scholar
  52. Inui, M., A. Saito and S. Fleischer. Isolation of the ryanodine receptor from cardiac sarcoplasmic reticulum and identity with the feet structures. J. Biol. Chem. 262: 15637–15642, 1987b.PubMedGoogle Scholar
  53. Jaimovitch, E., R.A. Venosa, P. Shrager and P. Horowitz. Density and distribution of tetrodotoxin receptors in normal and detubulated frog sartorius muscle. J. Gen. Physiol. 67: 399–416, 1976.CrossRefGoogle Scholar
  54. Jewett, P.H., J.R. Sommer and EA. Johnson. Cardiac muscle. Its ultrastructure in the finch and hummingbird with special reference to the sarcoplasmic reticulum. J. Cell Biol. 49: 50–665, 1971.PubMedCrossRefGoogle Scholar
  55. Jewett, P.H., S.D. Leonard and J.R. Sommer. Chicken cardiac muscle. Its elusive extended junctional sarcoplasmic reticulum and sarcoplasmic reticulum fenestrations. J. Cell Biol. 56: 595–600, 1973.PubMedCrossRefGoogle Scholar
  56. Jorgensen, A.O. and K.P. Campbell. Evidence for the presence of calsequestrin in two structurally different regions of myocardial sarcoplasmic reticulum. J. Cell Biol. 98: 1597–1602, 1984.Google Scholar
  57. Jorgensen, A.O., R. Broderick, A.P. Somlyo and A.V. Somlyo. Two structurally distinct calcium storage sites in rat cardiac sarcoplasmic reticulum: An electron microprobe analysis study. Circ. Res. 63: 1060–1069, 1988.Google Scholar
  58. Jorgensen, A.O., A. C-Y. Shen, W. Arnold, A.T. Leung and K.P. Campbell. Subcellular distribution of the 1,4dihydropyridine receptor in rabbit skeletal muscle in situ: An immunofluorescence and immunocolloidal gold-labeling study. J. Cell Biol. 109: 135–147, 1989.Google Scholar
  59. Katz, A.M., H. Takenaka and J. Watras. The Sarcoplasmic Reticulum. In: The Heart and Cardiovascular System, H. A. Fozzard, Raven Press, New York, pp. 731–746, 1986.Google Scholar
  60. Katz, A.M., H. Takenaka and J. Watras. The Sarcoplasmic Reticulum. In: The Heart and Cardiovascular System, H. A. Fozzard, Raven Press, New York, pp. 731–746, 1986.Google Scholar
  61. Kensler, R.W. and D.A. Goodenough. Isolation of mouse myocardial gap junctions. J. Cell Biol. 86: 755–7M, 1980.Google Scholar
  62. Kirino, Y. and H. Shimizu. Ca2+-induced Ca2+ release from fragmented sarcoplasmic reticulum: A comparison with skinned muscle fiber studies. J. Biochem. 92: 1287–1296, 1982.PubMedGoogle Scholar
  63. Lai, FA., H. Erickson, BA. Block and G. Meissner. Evidence for a junctional feet-ryanodine receptor complex from sarcoplasmic reticulum. Biochem. Biophvs. Res. Commun. 143: 704–709, 1987.Google Scholar
  64. Lai, F.A., H.F. Erickson, E. Rousseau, Q.-Y. Li, and G. Meissner. Purification and reconstitution of the calcium release channel from skeletal muscle. Nature 331: 315–319, 1988a.Google Scholar
  65. Langer, G.A., J.S. Frank and A. J. Brady. The Myocardium. In: Cardiovascular Physiology II A. C. Guyton and A. W. Cowley, University Park Press, Baltimore. Vol. 9: 191–237, 1976.Google Scholar
  66. Langer, GA., J.S. Frank and K.D. Philipson. Ultrastructure and calcium exchange of the sarcolemma, sarcoplasmic reticulum and mitochondria of the myocardium. Pharmacol. Ther. 16: 331–376, 1982.Google Scholar
  67. Lee, C.O. and H.A. Fozzard. Activities of potassium and sodium ions in rabbit heart muscle. J. Gen. Physiol. 65: 695–708, 1975.Google Scholar
  68. Lew, W.Y.W., L.V. Hryshko and D.M. Bers. Dihydropyridine receptors are primarily functional L-type Ca channels in rabbit cardiac myocytes. Circ. Res. 69: 1139–1145, 1991.Google Scholar
  69. Makowski, L., D.L.D. Caspar, W.C. Phillips and DA. Goodenough. Gap junction structures II. Analysis of the x-ray diffraction data. J. Cell Biol. 74: 629–645, 1977.Google Scholar
  70. Manjunath, C.K. and E. Page. Cell biology and protein composition of cardiac gap junctions. Am. J. Physiol. 248: H783–H791, 1985.Google Scholar
  71. Manjunath, C.K., G.E. Goings and E. Page. Isolation and protein composition of gap junctions from rabbit hearts. Biochem. J. 205: 189–194, 1982.Google Scholar
  72. Meissner, G. Isolation and characterization of two types of sarcoplasmic reticulum vesicles. Biochim. Biophys. Acta 389: 51–68, 1975.Google Scholar
  73. Meissner, G. Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. J. Biol. Chem. 261: 6300–6306, 1986a.PubMedGoogle Scholar
  74. Mobley, BA. and B.R. Eisenberg. Sizes of components in frog skeletal muscle measured by methods of stereology. J. Gen. Physiol. 66: 31–45, 1975.Google Scholar
  75. Mobley, B.A. and E. Page. The surface area of sheep cardiac Purkinje fibres. J. Physiol. 220: 547–563, 1972.PubMedGoogle Scholar
  76. Ostwald, T.J. and D.H. MacLennan. Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J. Biol. Chem. 249: 974–979, 1974.Google Scholar
  77. Page, E. Quantitative ultrastructural analysis in cardiac membrane physiology. Am. J. Physiol. 235: C147–C158, 1978.Google Scholar
  78. Page, E. and Y. Shibata. Permeable junctions between cardiac cells. Ann. Rev. Physiol. 43: 431–441, 1981.Google Scholar
  79. Page, E. and M. Surdyk-Droske. Distribution, surface density, and membrane area of diadic junctional contacts between plasma membrane and terminal cisterns in mammalian ventricle. Circ. Res. 45: 260–267, 1979.PubMedCrossRefGoogle Scholar
  80. Page, E., L.P. McCallister and B. Power. Stereological measurements of cardiac ultrastructures implicated in excitation-contraction coupling. Proc. Natl. Acad. Sci. US 68: 1465–1466, 1971.CrossRefGoogle Scholar
  81. Page, E., L. Chen, G.E. Goings and J. Upshaw-Earley. Cardiac gap junctions and gap junction-associated vesicles: Ultrastructural comparison of in situ negative staining with conventional positive staining. Circ. Res. 64: 501–514, 1989.PubMedCrossRefGoogle Scholar
  82. Page, S.G. and R. Niedergerke. Structures of physiological interest in the frog heart ventricle. J. Cell Sci. 11: 179203, 1972.Google Scholar
  83. Peachey, L.D. The sarcoplasmic reticulum and transverse tubules of the frog’s sartorius. J. Cell Biol. 25: 209–231, 1965.PubMedCrossRefGoogle Scholar
  84. Prabhu, S.D. and G. Salama. The heavy metal ions Ag+ and Hg+ trigger calcium release from cardiac sarcoplasmic reticulum. Arch. Biochem. Biophys. 277: 47–55, 1990.Google Scholar
  85. Reber, W.R. and R. Weingart. Ungulate cardiac Purkinje fibres: The influence of intracellular pH on the electrical cell-to-cell coupling. J. Physiol. 328: 87–104, 1982.PubMedGoogle Scholar
  86. Revel, J.P. and M.J. Karnovsky. Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J. Cell Biol. 33: C7–C12, 1967.Google Scholar
  87. Saito, A., S. Seiler, A. Chu and S. Fleischer. Preparation and morphology of SR terminal cisternae from rabbit skeletal muscle. J. Cell Biol. 99: 875–885, 1984.PubMedCrossRefGoogle Scholar
  88. Saito, A., M. Inui, M. Radermacher, J. Frank and S. Fleischer. Ultrastructure of the calcium release channel of sarcoplasmic reticulum. J. Cell Biol. 107: 211–219, 1988.Google Scholar
  89. Severs, N.J. The cardiac gap junction and intercalated disc. Int. J. Cardiol. 26: 137–173, 1990.PubMedCrossRefGoogle Scholar
  90. Skou, J.C. Enzymatic basis for active transport of Na+ and K+ across cell membrane. Physiol. Rev. 45: 596–617, 1965.Google Scholar
  91. Sommer, J.R. and E.A. Johnson. Cardiac muscle. A comparative study of Purkinje fibers and ventricular fibers. J. Cell Biol. 36: 497–526, 1968.Google Scholar
  92. Sommer, J.R. and EA. Johnson. Ultrastructure of cardiac muscle. In: Handbook of Physiology. Section 2. The Cardiovascular System R.M. Berne, ed. Am. Physiol. Soc., Bethesda, MD. Vol. I: 113–186, 1979.Google Scholar
  93. Spray, D.C., J.H. Stern, A.L. Harris and M.V.L. Bennett. Comparison of sensitivities of gap junctional conductance to H and Ca ions. Proc. Natl. Acad. Sci. USA 79: 441–445, 1982.PubMedCrossRefGoogle Scholar
  94. Stiles, G.L., M.G. Caron and R. J. Lefkowitz.,B-adrenergic receptors: Biochemical mechanisms of physiologic regulation. Physiol. Rev. 64: 661–743, 1984.Google Scholar
  95. Takeshima, H., S. Hishimura T. Matsumoto, H. Ishida, K. Kangawa, N. Minamino, H. Matsuo, M. Ueda, M. Hanaoka, T. Hirose, and S. Numa. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339: 439–445, 1989.PubMedCrossRefGoogle Scholar
  96. Takeshima, H., S. Hishimura T. Matsumoto, H. Ishida, K. Kangawa, N. Minamino, H. Matsuo, M. Ueda, M. Hanaoka, T. Hirose, and S. Numa. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339: 439–445, 1989.PubMedCrossRefGoogle Scholar
  97. Tsien, R.W., B.P. Bean, P. Hess, J.B. Lansman, B. Nilius and M.C. Nowycky. Mechanisms of calcium channel modulation by ß-adrenergic agents and dihydropyridine calcium agonists. J. Mol. Cell Cardiol. 18: 691–710, 1986.PubMedCrossRefGoogle Scholar
  98. Tsien, R.W., P. Hess, E.W. McCleskey and R.L. Rosenberg. Calcium channels: Mechanisms of selectivity, permeation and block. Ann. Rev. Biophys. Chem. 16: 265–290, 1987.CrossRefGoogle Scholar
  99. Vergara, J., R.W. Tsien and M. Delay. Inositol 1,4,5-triphosphate: A possible chemical link in excitation-contraction coupling in muscle. Proc. Natl. Asad. Sci. USA 82: 6352–6356, 1985.CrossRefGoogle Scholar
  100. Wagenknecht, T., R. Grassucci, J. Frank, A. Saito, M. Inui and S. Fleischer. Three-dimensional architecture of the calcium channel/foot structure of sarcoplasmic reticulum. Nature 338: 167–170, 1989.Google Scholar
  101. Weingart, R. and P. Hess. Free calcium in sheep cardiac tissue and frog skeletal muscle measured with Cat+-selective microelectrodes. Pflugers Arch. 402: 1–9, 1984.Google Scholar
  102. Wit, A.L. and M.R. Rosen. Afterdepolarizations and triggered activity. In: The Heart and Cardiovascular System H. A. Fozzard, Raven Press, New York, pp. 1449–1490, 1986.Google Scholar
  103. Zimmerman A.N.E. and W.C. Hülsmann. Paradoxical influence of calcium ions in the permeability of the cell membranes of the isolated rat heart. Nature 211: 646–647, 1966.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Donald M. Bers
    • 1
  1. 1.Department of PhysiologyLoyola University Medical SchoolMaywoodUSA

Personalised recommendations