Skip to main content

Part of the book series: Developments in Hydrobiology ((DIHY,volume 127))

Abstract

Copepods constitute the majority of the mesozooplankton in the oceans. By eating and being eaten copepods have implications for the flow of matter and energy in the pelagic environment. I first consider population regulation mechanisms in copepods by briefly reviewing estimates of growth and mortality rates and evidence of predation and resource limitation. The effects of variations in fecundity and mortality rates for the demography of copepod populations are then examined by a simple model, which demonstrates that population growth rates are much more sensitive to variations in mortality than to variations in fecundity. This is consistent with the observed tremendous variation in copepod fecundity rates, relatively low and constant mortality rates and with morphological and behavioral characteristics of pelagic copepods (e.g., predator perception and escape capability, vertical migration), which can all be considered adaptations to predator avoidance. The prey populations of copepods, mainly protozoa (ciliates) and phytoplankton, may be influenced by copepod predation to varying degrees. The highly variable morphology and the population dynamics (e.g., bloom formation) of the most important phytoplankton prey populations (diatoms, dinoflagellates) suggest that predation plays a secondary role in controlling their dynamics; availability of light and nutrients as well as coagulation and sedimentation appear generally to be more important. The limited morphological variation of planktonic ciliates, the well developed predator perception and escape capability of some species, and the often resource-unlimited in situ growth rates of ciliates, on the other hand, suggest that copepod predation is important for the dynamics of their populations. I finally examine the implications of mesozooplankton activity for plankton food webs, particularly their role in retarding vertical fluxes and, thus, the loss of material from the euphotic zone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aksnes, D. L., 1996. Natural mortality, fecundity and development in marine planktonic copepods - implications of behaviour. Mar. Ecol. Prog. Ser. 131: 315–316.

    Article  Google Scholar 

  • Aksnes, D. L. and T. Magnesen, 1988. A population dynamic approach to the estimation of production of four calanoid copepods in Lindâspollene, western Norway. Mar. Ecol. Prog. Ser. 45: 57–68.

    Article  Google Scholar 

  • Alldredge, A. L. and M. V. Silver, 1988. Characteristics, dynamics and significance of marine snow. Prog. Oceanogr. 20: 41–82.

    Article  Google Scholar 

  • Andersson, M., 1996. Regulering of copepodbestande i lavvandede fjorde. Betydning of f9debegrwnsning og mortalitet. M.Sc. thesis, University of Copenhagen, 78 pp.

    Google Scholar 

  • Bakker, C. and P. Van Rijswijk, 1987. Development time and growth rate of the marine copepod Temora longicornis as related to food conditions in the Oosterschelde estuary (Southern North Sea). Neth. J. Sea Res. 21: 125–141.

    Article  Google Scholar 

  • Banse, K., 1995. Zooplankton: Pivotal role in the control of ocean production. ICES J. Mar. Sci. 52: 265–277.

    Article  Google Scholar 

  • Bechman, B. R. and W. T. Peterson, 1986. Egg production by Acartia tonsa in Long Island Sound. J. Plankton Res. 8: 917–925.

    Article  Google Scholar 

  • Berggreen, U., B. Hansen and T. Kirboe, 1988. Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: implications for determination of copepod production. Mar. Biol. 99: 341–352.

    Google Scholar 

  • Bollens, S. M and B. W. Frost, 1991. Diel vertical migration in zoo-plankton: Rapid individual response to predators. J. Plankton Res. 13: 1359–1365.

    Google Scholar 

  • Bollens, S. M, B. W. Frost and J. R. Cordell, 1994. Chemical, mechanical and visual cues in the vertical migration behaviour of the marine planktonic copepod Acartia hudsonica. J. Plankton Res. 16: 555–564.

    Article  Google Scholar 

  • Burkill, P. H. and Kendall, T. F., 1982. Production of the copepod Eurytemora affinis in the Bristol Channel. Mar. Ecol. Prog. Ser. 7: 21–31.

    Article  Google Scholar 

  • Carrick, H. J. and G. L. Fahnenstiel, 1992. Growth and production of planktonic protozoa in Lake Michigan: In situ versus in vitro comparisons and importance to food web dynamics. Limnol. Oceanogr. 37: 1221–1235.

    Google Scholar 

  • Checkley, D. M. Jr., 1980. Food limitation of egg production by a marine, planktonic copepod in the sea off southern California. Limnol. Oceanogr. 25: 991–998.

    Article  Google Scholar 

  • Chrisholm, L. A. and J. C. Roff, 1990a. Size-weight relationships and biomass of tropical neritic copepods off Kingston, Jamaica. Mar. Biol. 106: 71–77.

    Google Scholar 

  • Chrisholm, L.A. and J. C. Roff, 1990b. Abundances, growth rates, and production of tropical neritic copepods off Kingston, Jamaica. Mar. Biol. 106: 79–89.

    Google Scholar 

  • Colebrook, J. M., 1979. Continuous plankton records: Seasonal cycles of phytoplankton and copepods in the North Atlantic Ocean and the North Sea. Mar. Biol. 51: 23–32.

    Article  Google Scholar 

  • Dagg, M., 1978. Estimated, in situ, rates of egg production for the copepod Centropages typicus (Krpyer) in the New York Bight. J. exp. mar. Biol. Ecol. 34: 183–196.

    Article  Google Scholar 

  • Dagg, M., 1993. Sinking particles as a possible source of nutrition for the large calanoidcopepod Neocalanus cristatus in the subarctic Pacific Ocean. Deep-Sea Res. 40: 1431–1445.

    Article  Google Scholar 

  • Dagg, M. J. and E. P. Green, 1994. Marine snow in the northern Gulf of Mexico. EOS, Transactions, AGU, 75: 36.

    Google Scholar 

  • Diel, S. and W. C. M. Klein Breteler, 1986. Growth and development of Calanus spp. (Copepoda) during a spring phytoplankton succession in the North Sea. Mar. Biol. 91: 85–92.

    Google Scholar 

  • Dolan, J. R., 1991. Microphagous ciliates in mesohaline Chesapeake Bay waters: estimates of growth rates and consumption by copepods. Mar. Biol. 111: 303–309.

    Article  Google Scholar 

  • Durbin, A. G. and E. G. Durbin, 1981. Standing stock and estimated production rates of phytoplankton and zooplankton in Narragansett Bay, Rhode Island. Estuaries 4: 21 11.

    Google Scholar 

  • Durbin, E. G., A. G. Durban, T. J. Smayda and R. G. Verity, 1983. Food limitation of production by adult Acartia tonsa in Narragansett Bay, Rhode Island. Limnol. Oceanogr. 28: 1199–1213.

    Google Scholar 

  • Eppley, R. W., 1972. Temperature and phytoplankton growth in the sea. Fish. Bull. 70: 1063–1085.

    Google Scholar 

  • Fenchel, T. and B. J. Finlay, 1983. Respiration rates in heterotrophic, free-living protozoa. Microbiol. Ecol. 9: 99–122.

    Google Scholar 

  • Fowler, S. W. and G. A. Knauer, 1986. Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog. Oceanogr. 16: 147–194.

    Google Scholar 

  • Fransz, H. G. and S. Diel, 1985. Secondary production of Calanus finmarchicus (Copepoda:Calanoidea) in a transitional system of the Fladen Ground area (Northern North Sea) during the spring of 1983. In P. E. Gibbs (ed.), Proc. 19th Europ. Mar. Biol. Symp. Cambridge University Press, Cambridge: 123–133.

    Google Scholar 

  • Frost, B. W., 1988. Variability and possible adaptive significance of diel vertical migration in Calanus pacificus, a planktonic marine copepod. Bull. Mar. Sci. 43: 675–694.

    Google Scholar 

  • Gilmer, R. W. and G. R. Harbison, 1986. Morphology and field behaviour of pteropod molluscs: Feeding methods in the families Cavoliniidae, Limacinidae, and Peraclididae ( Gastropoda: Thecosomata). Mar. Biol. 91: 47–57.

    Google Scholar 

  • Goldman, J. C., 1987. On phytoplankton growth rates and particulate C: N ratios at low light. Limnol. Oceanogr. 31: 1358–1363.

    Article  Google Scholar 

  • Gonzalez, H. E. and V. Smetacek, 1994. The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton faecal material. Mar. Ecol. Prog. Ser. 113: 233–246.

    Google Scholar 

  • Hairston, N. G., F. E. Smith and L. B. Slobodkin, 1960. Community structure, population control, and competition. Am. Nat. 94: 421425.

    Google Scholar 

  • Hansen, B. and K. Christoffersen, 1995. Specific growth rates of heterotrophic plankton organisms in a eutrophic lake during a spring bloom. J. Plankton Res. 17: 413–430.

    Article  Google Scholar 

  • Hansen, J. L. S., T. Kiorboe and A. L. Alldredge, 1996. Marine snow derived from abandoned larvacean houses: sinking rates, particle content and mechanism of aggregate formation. Mar. Ecol. Prog. Ser. 141: 205–215.

    Google Scholar 

  • Haslund, O. H. and M. Fryd, 1990. In situ unders0gelser of juvenile copepoders veekstrater gennem en sæson i Kattegat. M.Sc. thesis, University of Copenhagen, 97 pp.

    Google Scholar 

  • Huntley, M. and M. D. G. Lopez, 1992. Temperature dependent growth production of marine copepods: a global synthesis. Am. Nat. 140: 201–242.

    Google Scholar 

  • Hutchings, L., H. M. Verheye, B. A. Mitchell-Innes, W. T. Peterson, J. Huggett and S. Painting, 1995. Copepod production in the Southern Benguela system. ICES J. mar. Sci. 52: 439–455.

    Google Scholar 

  • Ianora, A. and I. Buttino, 1990. Seasonal cycle in population abundance and egg production in the planktonic copepods Centropages typicus and Acartia clausii. J. Plankton Res. 12: 473481.

    Google Scholar 

  • Jackson, G. A., 1993. Flux feeding as a mechanism for zooplankton grazing and its implications for vertical particle flux. Limnol. Oceanogr. 38: 1328–1331.

    Article  Google Scholar 

  • Jonsson, R. and P. Tiselius, 1990. Feeding behaviour, prey detection and capture efficiency of the copepod Acartia tonsa feeding on planktonic ciliates. Mar. Ecol. Prog. Ser. 60: 35 11.

    Google Scholar 

  • Kimmerer, W. J., 1983. Direct measurements of the production: biomass ratio of the subtropical calanoid copepod Acrocalanus inermis. J. Plankton Res. 5: 1–14.

    Article  Google Scholar 

  • Kimmerer, W. J., 1991. Predatory influences on prey distributions in coastal waters. Bull. Plankton Soc. Japan, Spec. Vol.: 161–174.

    Google Scholar 

  • Kimmerer, W. J. and A. D. McKinnon, 1987. Growth, mortality, and secondary production of the copepod Acartia tranteri in Westernport Bay, Australia. Limnol. Oceanogr. 32: 14–28.

    Google Scholar 

  • Kivi, K., S. Kaitala, H. Kuosa, J. Kuparinen, E. Leskinen, R. Lignell, B. Marcussen and T. Tamminen, 1993. Nutrient limitation and grazing control of the Baltic plankton community during annual succession. Limnol. Oceanogr. 38: 893–905.

    Google Scholar 

  • Kigrboe, T., 1993. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Adv. mar. Biol. 29: 1–72.

    Article  Google Scholar 

  • Kigrboe, T., C. Lundsgaard, M. Olesen and J. L. S. Hansen, 1994. Aggregation and sedimentation processes during a spring phytoplankton bloom: A field experiment to test coagulation theory. J. mar. Res. 52: 297–323.

    Google Scholar 

  • Ki0rboe, T. and T. G. Nielsen, 1994. Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 1. Copepods. Limnol. Oceanogr. 39: 493–507.

    Google Scholar 

  • Kiorboe, T., F. MOhlenberg and P. Tiselius, 1988. Propagation of planktonic copepods: production and mortality of egg. In G. A. Boxshall and H. K. Schminke (eds), Biology of Copepods. Developments i Hydrobiology 47. Kluwer Academic Press, Dordrecht: 219–225. Reprinted from Hydrobiologia 167 /168.

    Google Scholar 

  • Kiorboe, T. and M. Sabatini, 1994. Reproductive and life cycle strategies in egg-carrying cyclopoid and free-spawning calanoid copepods. J. Plankton Res. 16: 1353–1366.

    Article  Google Scholar 

  • Kigrboe, T. and M. Sabatini, 1995. Scaling of fecundity, growth and development in marine planktonic copepods. Mar. Ecol. Prog. Ser. 120: 285–298.

    Google Scholar 

  • KiOrboe, T., E. Saiz and M. Viitasalo, 1996. Prey switching behaviour in the planktonic copepod Acartia tonsa. Mar. Ecol. Prog. Ser. 143: 65–75.

    Google Scholar 

  • Landry, M. R., 1978. Population dynamics and Production of a Planktonic Marine Copepod, Acartia clausii, in a Small Temperate Lagoon on San Juan Island, Washington. Int. Revue ges. Hydrobiol. 63: 77–119.

    Article  Google Scholar 

  • Landry, M. R., 1980. Detection of prey by Calanus finmarchicus: implications of the first antennae. Limnol. Oceanogr. 25: 545549.

    Article  Google Scholar 

  • Landry, M. R., 1981. Switching between herbivory and carnivory by the planktonic marine copepod Calanus pacificus. Mar. Biol. 65: 77–82.

    Article  Google Scholar 

  • Leakey, R. J. G., P. H. Burkill and M. A. Sleigh, 1994. Ciliate growth rates from Plymouth Sound: comparison of direct and indirect estimates. J. mar. biol. Ass. U.K. 74: 849–861.

    Google Scholar 

  • Levinsen, H., 1995. Protozooplanktonets betydning i et arktisk Pelagisk fpdenet. M.Sc. thesis, Marine Biological Laboratory, University of Copenhagen, 53 pp.

    Google Scholar 

  • Lonsdale, D. J., E. M. Cosper, W. S. Kim, M. Doall, A. Divadeenam and S. H. Jonasdottir, 1996. Food web interactions in the plankton of Long Island bays, with preliminary observations on brown tide effects. Mar. Ecol. Prog. Ser. 134: 247–263.

    Google Scholar 

  • Miller, C. B., M. E. Huntley and E. R. Brooks, 1984. Post-collection molting rates of planktonic, marine copepods: Measurement, application, problems. Limnol. Oceanogr. 29: 1274–1289.

    Google Scholar 

  • Miller, C. B. and R. D. Nielsen, 1988. Development and growth of large, calanid copepods in the ocean Subarctic Pacific, May 1984. Prog. Oceanogr. 20: 275–292.

    Google Scholar 

  • Mullin, M. M., 1991. Relative variability of reproduction and mortality in two pelagic copepod populations. J. Plankton Res. 13: 1381–1387.

    Article  Google Scholar 

  • Munk, W. H. and G. A. Riley, 1952. Absorption of nutrients by aquatic plants. J. Mar. Res. 11: 215–240.

    Google Scholar 

  • Myers, R. A. and J. R. Runge, 1983. Predictions of seasonal natural mortality rates in a copepod population using life history theory. Mar. Ecol. Prog. Ser. 11: 189–194.

    Google Scholar 

  • Nielsen, T. G. and T. Kiorboe, 1994. Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 2. Ciliates. Limnol. Oceanogr. 39: 508–519.

    Google Scholar 

  • Ohman, M. D., 1986. Predator-limited population growth of the copepod Pseudocalanus sp. J. Plankton Res. 8: 673–713.

    Article  Google Scholar 

  • Ohman, M. D., 1988. Behavioral responses of zooplankton to predation. Bull. Mar. Sci. 43: 530–550.

    Google Scholar 

  • Ohman, M. D., 1990. The demographic benefits of diel vertical migration by zooplankton. Ecol. Monogr. 60: 257–281.

    Article  Google Scholar 

  • Ohman, M. D. and S. N. Wood, 1995. The inevitability of mortality. ICES J. Mar. Sci. 52: 517–522.

    Google Scholar 

  • Ohman, M. D. and S. N. Wood, 1996. Mortality estimation for planktonic copepods: Pseudocalanus newmani in a temperate fjord. Limnol. Oceanogr. 41: 126–135.

    Google Scholar 

  • Paffenhöfer, G.-A., 1975. On the biology of appendicularia of the southeastern North Sea. 10th Europ. Symp. Mar. Biol., Ostende, Belgium 2: 437–455.

    Google Scholar 

  • Paffenhöfer, G. A., 1993. On the ecology of marine cyclopoid copepods (Crustacea, Copepoda, Cyclopoida). J. Plankton Res. 15: 37–55.

    Article  Google Scholar 

  • Paffenhöfer, G.-A. and S. C. Knowles, 1979. Ecological implications of fecal pellets production and consumption by copepods. J. mar. Res. 37: 35–49.

    Google Scholar 

  • Peterson, W. T., P. Tiselius and T. Kiorboe, 1991. Copepod egg production, moulting and growth rates, and secondary production, in the Skagerrak in August 1988. J. Plankton Res. 13: 131–154.

    Google Scholar 

  • Peterson, W. T. and W. J. Kimmerer, 1994. Processes controlling recruitment of the marine calanoid copepod Temora longicornis in Long Island Sound: Egg production, egg mortality, and cohort survival rates. Limnol. Oceanogr. 39: 1594–1605.

    Google Scholar 

  • Pielou, E. C., 1969. An Introduction to Mathematical Ecology. Wiley-Interscience, New York, 286 pp.

    Google Scholar 

  • Rudstam, L. G., G. Aneer and M. Hildén, 1994. Top-down control in the pelagic Baltic ecosystem. Dana 10: 105–129.

    Google Scholar 

  • Sabatini, M. and T. Kiorboe, 1994. Egg production, growth and development of the cyclopoid copepod Oithona similis. J. Plankton Res. 16: 1329–1351.

    Article  Google Scholar 

  • Saiz, E. and T. Ki¢rboe, 1995. Predatory and suspension feeding of the copepod Acartia tonsa in turbulent environments. Mar. Ecol. Prog. Ser. 122: 147–158.

    Google Scholar 

  • Seki, H. Red tide of Oikopleura in Saanich Inlet. Lamer Tome 11, No. 3: 153–158.

    Google Scholar 

  • Smetacek, V., 1980. Zooplankton standing stock, copepod fecal pellets and particulate detritus in Kiel Bight. Estuar. coast. Mar. Sci. 2: 477–490.

    Article  Google Scholar 

  • Smetacek, V. S., 1984. Growth dynamics of a common Baltic protozooplankter: the ciliategenus Lohmaniella. Limnologica (Berlin) 15: 371–376.

    CAS  Google Scholar 

  • Smetacek, V. and F. Pollehne, 1986. Nutrient cycling in pelagic systems: A reappraisal of the conceptual framework. Ophelia 26: 401–428.

    Google Scholar 

  • Stoecker, D. K. and D. A. Egloff, 1987. Predation by Acartia tonsa Dana on planktonic ciliates and rotifers. J. exp. mar. Biol. Ecol. 110: 53–68.

    Google Scholar 

  • Tiselius, P., 1989. Contribution of aloricate ciliates to the diet of Acartia clausi and Centropages hamatus in coastal waters. Mar. Ecol. Prog. Ser. 56: 49–56.

    Article  Google Scholar 

  • Tiselius, P. and P. R. Jonsson, 1990. Foraging behaviour of six calanoid copepods: observations and hydrodynamic analysis. Mar. Ecol. Prog. Ser. 66: 23–33.

    Google Scholar 

  • Tranter, D. J., 1976. Herbivore production. In D. H. Cushing and J. J. Walsh (eds), The Ecology of the Seas. Blackwell Scientific Publications, Oxford: 186–224.

    Google Scholar 

  • Tumantseva, N. I. and A. I. Kopylov, 1985. Reproduction and production rates of planktonic infusoria in coastal waters of Peru. Oceanology 25: 390–394.

    Google Scholar 

  • Uye, S.-I., 1982. Population dynamics and production of Calanus sinicus ( Copepoda: Calanoida) in inlet waters. J. exp. mar. Biol. Ecol. 57: 55–83.

    Article  Google Scholar 

  • Verity, P., 1986. Growth rates of natural tintinnid populations in Narragansett Bay. Mar. Ecol. prog. Ser. 29: 117–126.

    Article  Google Scholar 

  • Verity, P. G. and V. Smetacek, 1996. Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar. Ecol. Prog. Ser. 130: 277–293.

    Article  Google Scholar 

  • Vuorinen, I., 1987. Vertical migration of Eurytemora (Crustacea, Copepoda ): A compromise between the risk of predation and decreased fecundity. J. Plankton Res. 9: 1037–1046.

    Article  Google Scholar 

  • Walker, D. R. and W. T. Peterson, 1991. Relationships between hydrography, phytoplankton production, biomass, cell size and species composition, and copepod production in the southern Benguela Upwelling system in April 1988. S. Afr. J. mar. Sci. 11: 289–305.

    Google Scholar 

  • Wiadnyana, N. W. and F. Rassoulzadegan, 1989. Selective feeding of Acartia clausi and Centropages typicus on microzooplankton. Mar. Ecol. Prog. Ser. 53: 37–45.

    Google Scholar 

  • Williamson, C. E. and H. A. Vanderploeg, 1988. Predatory suspension-feeding in Diaptomus: Prey defense and the avoidance of cannibalism. Bull. Mar. Sci. 43: 561–572.

    Google Scholar 

  • Yen, J., P. H. Lenz, D. V. Gassie and D. K. Hartline, 1992. Mechanoreceptors in marine copepods: electrophysiological studies on the first antennae. J. Plankton Res. 14: 495–512.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kiørboe, T. (1998). Population regulation and role of mesozooplankton in shaping marine pelagic food webs. In: Tamminen, T., Kuosa, H. (eds) Eutrophication in Planktonic Ecosystems: Food Web Dynamics and Elemental Cycling. Developments in Hydrobiology, vol 127. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1493-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1493-8_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5041-0

  • Online ISBN: 978-94-017-1493-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics