Skip to main content

The use of spectral fluorescence methods to detect changes in the phytoplankton community

  • Chapter
Eutrophication in Planktonic Ecosystems: Food Web Dynamics and Elemental Cycling

Part of the book series: Developments in Hydrobiology ((DIHY,volume 127))

Abstract

In vivo fluorescence methods are efficient tools for studying the seasonal and spatial dynamics of phytoplankton. Traditionally the measurements are made using single excitation-emission wavelength combination. During a cruise in the Gulf of Riga (Baltic Sea) we supplemented this technique by measuring the spectral fluorescence signal (SFS) and fixed wavelength fluorescence intensities at the excitation maxima of main accessory pigments. These methods allowed the rapid collection of quantitative fluorescence data and chemotaxonomic diagnostics of the phytoplankton community. The chlorophyll a-specific fluorescence intensities (R) and the spectral fluorescence fingerprints were analysed together with concentrations of chlorophyll a in different algal size-groups, phytoplankton biomass and taxonomic position. The lower level of R in the southern gulf was related to the higher proportion of cyanobacteria relative to total biomass and the lower abundance of small algae. The phycoerythrin fluorescence signal was obviously due to the large cyanobacteria. The basin-wide shift in the shape of chlorophyll a excitation spectra was caused by the variable proportions of differently pigmented cyanobacteria, diatoms and cryptomonads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alpine, A. E. and J. E. Cloern, 1985. Differences in in vivo fluorescence yield between three phytoplankton size classes. J. Plankton Res. 7: 381–390.

    Article  Google Scholar 

  • Althuis, IJ. A., W. W. C. Gieskes, L. Villerius and F. Colijn, 1994. Interpretation of fluorometric chlorophyll registrations with algal pigment analysis along a ferry transect in the southern North Sea. Neth. J. Sea Res. 33: 37–46.

    Google Scholar 

  • Anderson. J. M. and J. Barrett, 1986. Light-harvesting pigment-protein complexes of algae. In L. A. Staehelin and C. J. Amtzen (eds), Photosynthesis III. Encl. Plant Phys.. Springer-Verlag, Berlin, 19: 269–285.

    Google Scholar 

  • Andrushaitis, A., Z. Seisuma, M. Legzdina and E. Lensh, 1995. River load of the eutrophying substances and heavy metals into the Gulf of Riga. In E. Ojaver (ed.), Ecosystem of the Gulf of Riga between 1920 and 1990. Estonian Academy Publishers, Tallin, 32–40.

    Google Scholar 

  • Balode, M., 1994. Long-term changes of summer-autumn phytoplankton communities in the Gulf of Riga. In O. Guelorget and A. Lefebvre (eds), Baltic Sea and Mediterranean Sea. A comparative ecological approach of coastal environments and paralic ecosystems. Montpellier: 96–99.

    Google Scholar 

  • Bryant, D. A., 1986. The cyanobacterial photosynthetic apparatus: Comparison to those of higher plants and photosynthetic bacteria. In T. Platt and W. K. W. Li (eds), Photosynthetic picoplankton. Can. Bull. Fish. aquat. Sci. 214: 423–500.

    Google Scholar 

  • Cleveland, J. S. and M. J. Perry, 1987. Quantum yield, relative specific absorption and fluorescence in nitrogen-limited Chaetoceros grasilis. Mar. Biol. 94: 489–497.

    Google Scholar 

  • Cowles, T. J., R. A. Desiderio and S. Neuer, 1993. In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra. Mar. Biol. 115: 217–222.

    Google Scholar 

  • Edler, L. (ed.), 1979. Recommendations on methods for marine biological studies in the Baltic Sea. BMB Publ. 5: 38 pp.

    Google Scholar 

  • Falkowski, P. and D. A. Kiefer, 1985. Chlorophyll a fluorescence in phytoplankton: relationship to photosynthesis and biomass. J. Plankton Res. 7: 715–731.

    Article  CAS  Google Scholar 

  • Guo, C. and W. M. Dunstan, 1995. Depth-dependent changes in chlorophyll fluorescence number at a Sargasso Sea station. Mar. Biol. 122: 333–339.

    Google Scholar 

  • Harris, G. P., 1980. The relationship between chlorophyll a fluorescence, diffuse attenuation changes and photosynthesis in natural phytoplankton populations. J. Plankton Res. 2: 109–127.

    Article  CAS  Google Scholar 

  • Harris, G. P., 1986. Phytoplankton ecology. Structure, function and fluctuation. Chapman and Hall, London, 384 pp.

    Book  Google Scholar 

  • Johnsen, G. and E. Sakshaug, 1993. Bio-optical characteristics and photoadaptive responses in the toxic and bloom-forming dinoflagellates Gyrodinium aureolum, Gymnodinium galatheanum, and two strains of Prorocentrum minimum. J. Phycol. 29: 627–642.

    Article  CAS  Google Scholar 

  • Johnsen, G. and E. Sakshaug, 1996. Light harvesting in bloom-forming marine phytoplankton: species-specificity and photoacclimation. In F. L. Figueroa, C. Jimenez, J. L. Pèrez-Llorèns and F. X. Niell (eds), Underwater light and algal photobiology. Sci. Mar. 60: 47–56.

    Google Scholar 

  • Kiefer, D. A., 1973. Chlorophyll a fluorescence in marine centric diatoms: responses of chloroplasts to light and nutrient stress. Mar. Biol. 23: 39–46.

    Google Scholar 

  • Kirk, J. O. T., 1983. Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge, 401 pp.

    Google Scholar 

  • Kopf, U. and J. Heinze, 1984. 2,7-Bis(diethylamino)phenazoxonium chloride as a quantum counter for emission measurements between 240–700 nm. Analyt. Chem. 56: 1931–1935.

    Google Scholar 

  • Kostrichkina, E., B. Kalveka, B. Jansone and A. Ikauniece-Grunde, 1994. Planktonic communities in the conditions of eutrophycation of the Gulf of Riga. In O. Guelorget and A. Lefebvre (eds), Baltic Sea and Mediterranean Sea. A comparative ecological approach of coastal environments and paralic ecosystems. Montpellier: 110–115.

    Google Scholar 

  • Legendre, L. and S. Demers, 1984. Towards dynamic biological oceanography and limnology. Can. J. Fish. aquat. Sci. 41: 2–19. Loftus, M. E. and H. H. Seliger, 1975. Some limitations of the in vivo fluorescence technique. Chesapeake Sci. 16: 79–92.

    Google Scholar 

  • Lorenzen, C. J., 1966. A method for continuous measurement of in vivo chlorophyll concentration. Deep Sea Res. 13: 223–227.

    Google Scholar 

  • Mitchell, B. G. and D. A. Kiefer, 1988a. Chlorophyll a specific absorption and fluorescence excitation spectra for light limited phytoplankton. Deep Sea Res. 35: 639–663.

    Google Scholar 

  • Mitchell, B. G. andD. A. Kiefer, 1988b. Variability in pigment specific particulate fluorescence and absorption spectra in the northeastern Pacific Ocean. Deep Sea Res. 35: 665–689.

    Google Scholar 

  • Oldham, P. B., E. J. Zillioux and I. M. Warner, 1985. Spectral ‘fingerprinting’ of phytoplankton populations by two-dimensional fluorescence and fourier-transform-based pattern recognition. J. mar. Res. 43: 893–906.

    Google Scholar 

  • Owens, T. G., 1991. Energy transformation and fluorescence in photosynthesis. NATO ASI Series G27: 101–137.

    Google Scholar 

  • Poryvkina, L., S. Babichenko, S. Kaitala, H. Kuosa and A. Shalapjonok, 1994. Spectral fluorescence signature in the characterization of phytoplankton community composition. J. Plankton Res. 16: 1315–1327.

    Article  Google Scholar 

  • Prézelin, B. B., 1981. Light reactions in photosynthesis. In T. Platt (ed.), Physiological bases of phytoplankton ecology. Can. Bull. Fish. aquas. Sci. 210: 1–43.

    Google Scholar 

  • Rowan, K. S., 1989. Photosynthetic pigments of algae. Cambridge University Press, Cambridge, 334 pp.

    Google Scholar 

  • Sakshaug, E., G. Johnsen, K. Andresen and M. Vernet, 1991. Modeling of light-dependent algal photosynthesis and growth: experiments with Barents Sea diatoms Thalassiosira nordenskioeldii and Chaetoceros furcellatus. Deep Sea Res. 38: 415–430.

    Article  Google Scholar 

  • SooHoo, J. B., D. A. Kiefer, D. J. Collins and I. S. McDermid, 1986. In vivo fluorescence excitation and absorption spectra of marine phytoplankton: I. Taxonomic characteristics and responses to photoadaptation. J. Plankton Res. 8: 197–214.

    Google Scholar 

  • Strass, V., 1990. On the calibration of large-scale fluorometric chlorophyll measurements from towed undulating vehicles. Deep Sea Res. 37: 525–540.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur vervollkommung der quantitativen Phytoplankton-Methodik. Mitt.int. Verein. theor. angew. Limnol., 9: 1–38.

    Google Scholar 

  • Vincent, W. F., 1983. Fluorescence properties of the freshwater phytoplankton: three algal classes compared. Br. phycol. J. 18: 5–21.

    Google Scholar 

  • Waterbury, J. B., S. W. Watson, F. W. Valois and D. G. Franks, 1986. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. In T. Platt and W. K. W. Li (eds), Photosynthetic picoplankton. Can. Bull. Fish. aquat. Sci. 214: 71–120.

    Google Scholar 

  • Watras, C. J. and A. L. Baker, 1988. Detection of planktonic cyanobacteria by tandem in vivo fluorometry. Hydrobiologia 169: 77–84.

    Article  Google Scholar 

  • Wintermans, J. F. G. H. and A. De Mots, 1965. Spectrophotometric characteristics of chlorophylls a and b and their phaeophytins in ethanol. Biochem. Biophys. Acta 109: 448–453.

    Google Scholar 

  • Wyman, M., 1992. An in vivo method for the estimation of phycoerythrin concentrations in marine cyanobacteria (Synechococcus spp.). Limnol. Oceanogr. 37: 1300–1306.

    Google Scholar 

  • Yentsch, C. S. and D. A. Phinney, 1985. Spectral fluorescence: an ataxonomic tool for studying the structure of phytoplankton populations. J. Plankton Res. 7: 617–632.

    Article  CAS  Google Scholar 

  • Yentsch, C. S. and C. M. Yentsch, 1979. Fluorescence spectral signatures: The characterization of phytoplankton populations by the use of excitation and emission spectra. J. Mar. Res. 37: 471–483.

    Google Scholar 

  • Yurkovskis, A., F. Wulff, L. Rahm, A. Andrushaitis and M. RodiquezMedina, 1993. A nutrient budget of the Gulf of Riga, Baltic Sea. Estuar. coast. Shelf Sci. 37: 113–127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Seppälä, J., Balode, M. (1998). The use of spectral fluorescence methods to detect changes in the phytoplankton community. In: Tamminen, T., Kuosa, H. (eds) Eutrophication in Planktonic Ecosystems: Food Web Dynamics and Elemental Cycling. Developments in Hydrobiology, vol 127. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1493-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1493-8_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5041-0

  • Online ISBN: 978-94-017-1493-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics