Skip to main content

Ergodic Theorems for Homogeneous Random Measures

  • Chapter
Ergodic Theorems for Group Actions

Part of the book series: Mathematics and Its Applications ((MAIA,volume 78))

  • 444 Accesses

Abstract

In this chapter G is a σ-compact locally compact topological group; e is the identity of G; B is the σ-algebra of Borel sets in G and μ l and μ r are fixed left and right Haar measures on G, respectively; λ is a relatively invariant Borel measure on G and Δλ(·) is its modular function; K is the field of all bounded sets in B; K e := {A : eAK, μ l (A) > >0} (it is a direction with the following “downwards” order: A l < A 2 if A lA 2); M is the set of all Borel measures on G; X = G/K is a left homogeneous space; μ is an invariant measure on X; (, F, P) is a probability space;ℝ̃+=ℝ+∪{+∞}; and ℝ̃=ℝ{-∞}∪{+∞}.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical Notes

  1. Garonas E.A., Tempelman A.A. Ergodic Theorems for Homogeneous Random Measures and Signed Measures on Groups. In: III international Vilnius conference on probability theory and mathematical statistics. Summaries. — Vilnius, 1981.

    Google Scholar 

  2. Akcoglu M.A., Krengel U. Ergodic theorems for superadditive process. — C.R. Math. Acad., Soc. R. Can., v. 2, p. 175–179.

    Google Scholar 

  3. 2. Akcoglu M.A., Krengel U. Ergodic theorems for superadditive process. — J. Reine Angew. Math., 1981, v.323, p.53–67.

    Google Scholar 

  4. Boclé J. Théorèmes de dérivation globale dans les groupes topologiques localement compacts. — C.R. Ac. Sci., Paris, 1959, v.248, p.2063–2065.

    Google Scholar 

  5. Boclé J. Sur la théorie ergodique. — Ann. Inst. Fourier, 1960, v.10, p.1–45.

    Google Scholar 

  6. Garonas E.A., Tempelman A.A. Ergodic theorems for homogeneous random fields on groups.— Lietuvos Matematikos Rinkinys, 1984, v.24, No.1, p.19–34. English c/c translation, p.11–21

    Google Scholar 

  7. Garonas E.A., Tempelman A.A. Ergodic Theorems for Homogeneous Random Measures and Signed Measures on Groups. In: III international Vilnius conference on probability theory and mathematical statistics. Summaries. — Vilnius, 1981.

    Google Scholar 

  8. Fritz J. Generalization of McMillan’s theorem to random set functions. — Studia Scientiarum Mathematicarum Hungarica, 1970, v.5, p.369394.

    Google Scholar 

  9. Nguyen X.X., Zessin H. Ergodic theorems for spatial processes.–Z. Wahrsheinlichkeitstheorie verw. Geb., 1979, v. 48, p. 133–158.

    Article  MATH  Google Scholar 

  10. Smythe R.T. Multiparameter subadditive processes. — Ann. of Probab., 1976, v.4, p.772–782.

    Google Scholar 

  11. Zessin H. — see Nguyen X.X. Zimmer R.J. Compact nilmanifold extensions of ergodic actions. — Trans. Amer. Math. Soc., 1976, v. 223, p. 397–406.

    Article  Google Scholar 

  12. Zessin H. — see Nguyen X.X. Zimmer R.J. Orbit spaces of unitary representations, ergodic theory, and simple Lie groups. — Ann. of Mathem., 1977, v. 106, p. 573–588.

    Google Scholar 

  13. Garonas E.A., Tempelman A.A. Ergodic Theorems for Homogeneous Random Measures and Signed Measures on Groups. In: III international Vilnius conference on probability theory and mathematical statistics. Summaries. — Vilnius, 1981.

    Google Scholar 

  14. Garonas E.A., Tempelman A.A. Ergodic theorems for homogeneous random fields on groups.— Lietuvos Matematikos Rinkinys, 1984, v.24, No.1, p.19–34. English c/c translation, p.11–21

    Google Scholar 

  15. Garonas E.A. Ergodic theorem for homogeneous in the wide sense random measures. Lietuvos Matematikos Rinkinys, 1984, v.24, No.1, p.35–43.

    Google Scholar 

  16. Gaposhkin V.F. The local ergodic theorem for groups of unitary operators and second—order stationary processes. Matem. Sbornik, 1980, v.111, p.249–265 (in Russian).

    Google Scholar 

  17. Krengel U.(see also Akcoglu M.A., Derriennic Y.) A local ergodic theorem. - Invent. Math., 1969, v. 6, p. 329–333.

    MathSciNet  MATH  Google Scholar 

  18. Kubokava Y. A general local ergodic theorem. — Proc. Japan Acad. Sci., 1972. v.48, p.461–465.

    Google Scholar 

  19. Kubokava Y. A local ergodic theorem for semi-groups on L. Tôhokn. Math. J. (2), 1974, v.26, p.411–422.

    Google Scholar 

  20. Sato R. On a local ergodic theorem. - Studia Math., 1976, v.58, p.1–5.

    Google Scholar 

  21. Terrell T.R. Local ergodic theorems for N-parameter semigroups of operators. - Lecture Notes Math., 1970, v.160, p.53–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tempelman, A. (1992). Ergodic Theorems for Homogeneous Random Measures. In: Ergodic Theorems for Group Actions. Mathematics and Its Applications, vol 78. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1460-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1460-0_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4155-5

  • Online ISBN: 978-94-017-1460-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics