Advertisement

Environmental Impacts of Bacterial Biopesticides

  • Travis R. Glare
  • Maureen O’Callaghan
Chapter
Part of the Progress in Biological Control book series (PIBC, volume 1)

Abstract

Bacteria have been used in the biological control of insect pests since the early 20th century, but very few entomopathogenic bacteria have been developed into commercially available biopesticides. Bacillus thuringiensis Berliner (Bt) is currently used in over 90% of all biopesticides sold worldwide. Bt has been developed into over 100 products (Glare and O’Callaghan 2000) which are used, collectively, against at least 1000 pest species. The species Bt is comprised of numerous strains and subspecies (Lecadet et al. 1999), that can produce a wide variety of invertebrate-specific toxins.

Keywords

Bacillus Thuringiensis Laboratory Bioassay Bacillus Sphaericus Bacillus Thuringiensis Subsp Entomopathogenic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addison, J.A. & Holmes, S.B. (1995). Effect of two commercial formulations of Bacillus thuringiensis subsp. kurstaki (Dipel R 8L and Dipel R 8AF) on the collembolan species Folsomia candida in a soil microcosm study. Bulletin of Environmental Contamination and Toxicology, 55, 771–778.PubMedCrossRefGoogle Scholar
  2. Addison, J.A. & Holmes, S.B. (1996). Effect of two commercial formulations of Bacillus thuringiensis subsp. kurstaki on the forest earthworm Dendrobaena octaedra. Canadian Journal of Forest Research, 26, 1594–1601.CrossRefGoogle Scholar
  3. Balaraman, K., Hoti, S.L. & Manonmani, L.M. (1981). An indigenous virulent strain of Bacillus thuringiensis, highly pathogenic and specific to mosquitoes. Current Science, 50, 199–200.Google Scholar
  4. Barloy, F., Lecadet, M.M. &Delecluse, A. (1998). Distribution of clostridial cry-like genes among Bacillus thuringiensis and Clostridium strains. Current Microbiology, 36, 232–237.PubMedCrossRefGoogle Scholar
  5. Barjac, H. de, Larget-Thiery, I., Cosmao-Dumanoir, V. & Ripouteau, H. (1985). Serological classification of Bacillus sphaericus strains on the basis of toxicity to mosquito larvae. Applied Microbiology and Biotechnology, 21, 85–90.Google Scholar
  6. Battisti, L., Green, B.D. & Thorne, C.B. (1985). Mating system for transfer of plasmids among Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Journal of Bacteriology, 162, 543–50.PubMedGoogle Scholar
  7. Beenej, J.J., Garcia, J. & Johnson, M. (1996). Effects of three larvicides on the production of Aedes albopictus based on removal of pupal exuviae. Journal of the American Mosquito Control Association, 12, 499–502.Google Scholar
  8. Ben-Dov, E., Zaritsky, A., Dahan, E., Barak, Z., Sinai, R., Manasherob, R., Khamraev, A., Troitskaya, E., Dubtsky, A., Berezina, N. & Margalith, Y. (1997). Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis. Applied and Environmental Microbiology 63, 4883–4890.PubMedGoogle Scholar
  9. Boisvert, M. & Boisvert, J. (2000). Effects of Bacillus thuringiensis var. israelensis on target and nontarget organisms: a review of laboratory and field experiments. Biocontrol Science and Technology, 10, 517–561.CrossRefGoogle Scholar
  10. Surges, H.D. (ed.)(1981). Microbial Control of Pests and Plant Diseases 1970–80. New York: Academic Press.Google Scholar
  11. Burges, H.D. & Jones, K.A. (1998). Formulation of Bacteria, Viruses and Protozoa to Control Insects. In H.D. Burges (Ed.), Formulation of Microbial Biopesticides; Beneficial Microorganisms, Nematodes and Seed Treatments (pp. 33–127 ). Dordrecht, The Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
  12. Burke, W.F. Jr., McDonald, K.O. & Davidson-EW (1985). Effect of UV light on spore viability and mosquito larvicidal activity of Bacillus sphaericus 1593. Applied and Environmental Microbiology, 46, 954–956.Google Scholar
  13. Butler, L., Zivkovich, C. & Sample, B.E. (1995). Richness and ab&ance of arthropods in the oak canopy of West Virginia’s Eastern Ridge and Valley Section during a study of impact of Bacillus thuringiensis with emphasis on macrolepidoptera larvae. Bulletin of the Agriculture and Forestry Experimental Station West Virginia University, 711, 19 pp.Google Scholar
  14. Cantwell, G.E. & Lehnert, T. (1979). Lack of effect of certain microbial insecticides on the honeybee. Journal of Invertebrate Pathology, 33, 381–382.CrossRefGoogle Scholar
  15. Cantwell, G.E., Lehnert, T. & Fowler, J. (1972). Are biological insecticides harmful to the honey bee? American Bee Journal, 112, 255–258.Google Scholar
  16. Carvalho-Pinto, C.J., Rabinovitch, L., Alves, R.S.A., Silva, C.M.B. & Consoli, R.A.G.B. (1995). Fate of Bacillus sphaericus after ingestion by the predator Belostoma micantulum (Hemiptera: Belostomatidae). Memorias do Instituto Oswaldo Cruz, 90, 329–330.PubMedCrossRefGoogle Scholar
  17. Cayrol, J.C. (1974). Action of Bacillus thuringiensis toxins on the mycophagous nematode Ditylenchus myceliophagus. Simposio International (XII) DE Nematologia, Sociedad Europea de Nematologos, 1–7 Sept, 1974, Granada, Spain, 21–22.Google Scholar
  18. Chak, K.F., Chow, C.D., Tseng, M.Y., Kao, S.S., Tuan, J.J., & Feng, T.Y. (1994). Determination and distribution of cry-type genes of Bacillus thuringiensis isolated from Taiwan. Applied and Environmental Microbiology, 60, 2415–2420.PubMedGoogle Scholar
  19. Charles, J.F., Nielsen-LeRoux, C. & Delecluse, A. (1996). Bacillus sphaericus toxins: molecular biology and mode of action. Annual Review of Entomology, 41, 451–472.PubMedCrossRefGoogle Scholar
  20. Chen, S.F., Li, D.C., Chen, Y.J., Guan, Y.X., Wu, X.L. & Feng, Y.D. (1993). Effect of Daphnia on Bacillus sphaericus in control of mosquito larvae. Chinese Journal of Parasitic Disease Control, 6, 282–285.Google Scholar
  21. Chilcott, C.N., Knowles, B.H., Ellar, D.J. & Drobniewski, F.A. (1990). Mechanism of action of Bacillus thuringiensis israelensis parasporal body. In H. de Barjac, & D.J. Sutherland (Eds.) Bacterial Control of Mosquitoes and Black Flies: Biochemistry, Genetics and Applications of Bacillus thuringiensis israelensis and Bacillus sphaericus, (pp. 45–465 ), London: Unw in Hyman.CrossRefGoogle Scholar
  22. Claus, H., Jackson, T.A. & Filip, Z. (1995). Characterization of Serratia entomophila strains by genomic DNA fingerprints and plasmid profiles. Microbiological Research 150, 159–166.CrossRefGoogle Scholar
  23. Conner, A.J., Metz, P.L.J., Glare, T.R., Escaler, M. & Nap, J-P.H. (2002). The difficult science of ecological and environmental issues with the release of GM crops. The Plant Journal (in press).Google Scholar
  24. Correa, M. & Yousten, A.A. (1997). Conjugation by mosquito pathogenic strains of Bacillus sphaericus. Memorias do Instituto Oswaldo Cruz, 92, 415–419.PubMedCrossRefGoogle Scholar
  25. Crecchio, C. & Stotzky, G. (1998). Insecticidal activity and biodegradation of the toxin from Bacillus thuringiensis subsp. kurstaki bo& to humic acids from soil. Soil Biology and Biochemistry 30, 463–470.CrossRefGoogle Scholar
  26. Crickmore, N., Zeigler, D.R., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J, Bravo, A. & Dean, D.H. (2002). “Bacillus thuringiensis toxin nomenclature” http://www.biols.susx.ac.uk/ Home/Neil _Crickmore/Bt/index.html (March 2002).Google Scholar
  27. Crocker, R.L. (1992). Laboratory testing of milky spore disease, Bacillus popilliae, for control of Phyllophaga crinita white grubs. Progress Report Texas Agricultural Experiment Station, No. 4891–4921, 89–91.Google Scholar
  28. Damgaard, P.H., Granum, P.E., Bresciani, J., Torregrossa, M.V., Eilenberg, J. & Valentino, L. (1997). Characterization of Bacillus thuringiensis isolated from infections in bum wo&s. FEMS Immunology and Medical Microbiology, 18, 47–53.PubMedCrossRefGoogle Scholar
  29. Davidson, E.W., Urbina, M., Payne, J., Mulla, M.S., Darwazeh, H., Dulmage, H.T. & Correa, J.A. (1984). Fate of Bacillus sphaericus 1593 and 2362 spores used as larvicides in the aquatic environment. Applied and Environmental Microbiology, 47, 125–129.PubMedGoogle Scholar
  30. Davidson, E.W., Sweeney, A.W. & Cooper, R. (1981). Comparative field trials of Bacillus sphaericus strain 1593 and B. thuringiensis var. israelensis commercial powder formulations. Journal of Economic Entomology, 74, 350–354.Google Scholar
  31. Davidson, E.W., Morton, H.L., Moffett, J.O. & Singer, S. (1977). Effect of Bacillus sphaericus strain SSII-1 on honey bees, Apis mellifera. Journal of Invertebrate Pathology, 29, 344–346.CrossRefGoogle Scholar
  32. Davies, P.E., (1994). Effect of BT (Bacillus thuringiensis var tenebrionis) on stream macroinvertebrate ab&ance, emergence and drift. Report for the Division of Silviculture, Forestry Commission, Tasmania, 19 pp.Google Scholar
  33. des Rochers, B. & Garcia, R. (1984). Evidence for persistence and recycling of Bacillus sphaericus. Mosquito News, 44, 160–165.Google Scholar
  34. Dingman, D.W. (1999). Conjugative transposition of Tn916 and Tn925 in Bacillus popilliae. Canadian Journal of Microbiology, 45, 530–535.Google Scholar
  35. Dodd, S.J., O’Callaghan, M., Glare, T.R. & Ronson, C.W. (2001). Diversity and transfer of insect disease-encoding plasmids among Serratia spp. (Enterobacteriaceae). Interactions in the Microbial World, 9`“ International Symposium on Microbial Ecology,Amsterdam., p138.Google Scholar
  36. Dutky, S.R. (1940). Two new spore-forming bacteria causing milky diseases of the Japanese beetle. Journal of Agricultural Research, 61, 57–68.Google Scholar
  37. Eidt, D.C. (1984). B.t. budworm spray is innocuous to aquatic insects. Technical Note, Maritime Forest Research Centre Canada, No. 114, 4 pp.Google Scholar
  38. EPA, Schneider, W.R. et al. (1998). EPA Reregistration Eligibility Decision (RED) Bacillus thuringiensis. US EPA, Prevention, Pesticides and toxic substances, EPA738-R-98–004, 91 pp.Google Scholar
  39. Estruch, J.J., Warren, G.W., Mullins, M.A., Nye, G.J., Craig, J.A. & Koziel, M.G. (1996). Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proceedings of the National Academy of Sciences USA, 93, 5389–5394.CrossRefGoogle Scholar
  40. Frye, R.D., Dix, M.E. & Carey, D.R. (1988). Effect of two insecticides on ab&ance of insect families associated with Siberian elm windbreaks. Journal of the Kansas Entomological Society, 61, 278–284.Google Scholar
  41. Genthner, F.J., Foss, S.S., Campbell, R.P. & Fournie, J.W. (1993). Fate and survival of microbial pest control agents in nontarget aquatic organisms. Diseases of Aquatic Organisms, 16, 157–162.CrossRefGoogle Scholar
  42. Glare, T.R., Corbett, G.E. & Sadler, A.J. (1993). Association of a large plasmid with amber disease of the New Zealand grass grub, Costelytra zealandica, caused by Serratia entomophila and Serratia proteamaculans. Journal of Invertebrate Pathology, 62, 165–170.CrossRefGoogle Scholar
  43. Glare, T.R. (1994). Stage-dependant synergism using Metarhizium anisopliae and Serratia entomophila against Costelytra zealandica. Biocontrol Science and Technology 4, 321–329.CrossRefGoogle Scholar
  44. Glare, T.R. & O’Callaghan, M. (1998). Environmental and health impacts of Bacillus thuringiensis israelensis. Report for the Ministry of Health, New Zealand. 54 pp.Google Scholar
  45. Glare, T.R. & O’Callaghan, M. (1999). Environmental and health impacts of S-methoprene. Report for the Ministry of Health, New Zealand. 100 pp.Google Scholar
  46. Glare, T.R. & O’Callaghan, M. (2000) Bacillus thuringiensis; Biology, Ecology and Safety. Chichester, UK: John Wiley and Sons.Google Scholar
  47. Grigorova, R., Michailova, L., Miteva, V., Peneva, N., Ganova, L. & Takova, T. (1988). Conjugal transfer of streptococcal plasmids to strains of Bacillus sphaericus. FEMS Microbiology Letters, 49,289–294.Google Scholar
  48. Grimont, P.A.D., Jackson, T.A., Ageron, E. & Noonan, M.J. (1988). Serratia entomophila sp. nov. associated with amber disease in the New Zealand grass grub Costelytra zealandica. International Journal of Systematic Bacteriology 38, 1–6.CrossRefGoogle Scholar
  49. Grison, P., Martouret, D., Servais, B. & Devriendt, M. (1976). Pesticides microbiens et environnement (Microbial pesticides and the environment). Annales de Zoologie, Ecologic Animale, 8, 133–160.Google Scholar
  50. Gruner, L. (1974). Sensibilisation des larvas de Phyllophaga pleei Bl. et de P. patrueloides Pa. (Coleoptera: Scarabaeidae) a la mycose a Metarrhizium anisopliae Sorokin au moyen d’une faible dose d’insecticide ou d’un autre agent infectieux. Annales de Zoologie, Ecologic Animale, 5, 335–349.Google Scholar
  51. Haag, H & Boucias, D.G. (1991). Infectivity of insect pathogens against Neochetina eichhorniae, a biological control agent of water hyacinth. Florida Entomologist, 74, 128–133.Google Scholar
  52. Haag, K.H. & Buckingham, G.R. (1991). Effects of herbicides and microbial insecticides on the insects of aquatic plants. Journal of Aquatic Plant Management, 29, 55–57.Google Scholar
  53. Hansen, B.M., Damgaard, P.H., Eilenberg, J. & Pedersen, J.C., (1996). Bacillus thuringiensis. Ecology and Environmental Effects of its Use for Microbial Pest Control. Ministry of Environment and Energy, Denmark, Danish Environmental Protection Agency, Environment Project no. 316, 126 pp.Google Scholar
  54. Hassan, S.A., Bigler, F., Bogenschutz, H., Brown, J.U., Firth, S.I., Huang, P., Ledieu, M.S., Naton, E., Oomen, P.A., Overmeer, W.P.J., Rieckmann, W., Samsoe Petersen, L., Viggiani, G., van Zon, A.Q. & Petersen, L.S. (1983). Results of the second joint pesticide testing programme by the IOBC/WPRS-Working Group “Pesticides and Beneficial Arthropods”. Zeitschriftfur-AngewandteEntomologie, 95, 151–158.Google Scholar
  55. Hilder, V.A. & Boulter, D. (1999). Genetic engineering of crop plants for insect resistance-a critical review. Crop Protection, 18, 177–191.CrossRefGoogle Scholar
  56. Holmes, S.B. (1998). Reproduction and nest behaviour of Tennessee warblers Vermivora peregrina in forests treated with Lepidoptera-specific insecticides. Journal of Applied Ecology, 35, 185–194.CrossRefGoogle Scholar
  57. Hurpin, B. & Robert, P.H. (1976). Conservation in the soil of three microorganisms pathogenic to the larvae of Melolontha melolontha (Col.: Scarabaeidae). Entomophaga, 21, 73–80.CrossRefGoogle Scholar
  58. Innes, D.G.L. & Bendell, J.F. (1989) The effects on small-mammal populations of aerial applications of Bacillus thuringiensis, fenitrothion, and Matacil used against jack pine budworm in Ontario. Canadian Journal of Zoology, 67, 1318–1323.CrossRefGoogle Scholar
  59. Jackson, T.A., Glare, T.R. & O’Callaghan, M. (1991). Pathotypic bo&aries for Serratia spp. causing amber disease in the New Zealand grass grub, Costelytra zealandica. In P.H. Smits (Ed.) Proceedings of the 3r d European Meeting of Microbial Control of Pests (pp. 148–152 ). Wageningen, The Netherlands.Google Scholar
  60. Jackson, T.A., Boucias, D.G. & Thaler, J.-O. (2001). Pathobiology of amber disease, caused by Serratia spp., in the New Zealand grass grub Costelytra zealandica. Journal of Invertebrate Pathology, 78, 232–243.Google Scholar
  61. Jackson, T.A., Pearson, J.F., O’Callaghan, M., Mahanty, H.K. & Willocks, M. (1992). Pathogen to product–development of Serratia entomophila (Enterobacteriaceae) as a commercial biological control agent for the New Zealand grass grub (Costelytra zealandica). In T.A. Jackson & T.R. Glare (Eds), Use of Pathogens in Scarab Pest Management (pp. 191–198 ). Andover, UK: Intercept.Google Scholar
  62. Jackson, T.A., Richards, N.K., Nelson, T.L., Townsend, R.J., Young, S.D. & Glare, T.R. (1997). Use of a DNA probe for detection of pathogenic Serratia spp. in soil and grass grub populations. Proceedings of the 30`“ Annual Meeting of the Society for Invertebrate Pathology, Banff, Canada, p. 32Google Scholar
  63. Jackson, T.A. & Saville, D.J. (2000). Bioassays of replicating bacteria against soil-dwelling insect pests. In A. Navon & K.R.S. Ascher (Eds.) Bioassay of entomopathogenic microbes and nematodes (pp. 73–94 ). Wallingford UK: CABI Publishing.Google Scholar
  64. James, R.R., Miller, J.C. & Lighthart, B. (1993). Bacillus thuringiensis var. kurstaki affects a beneficial insect, the cinnabar moth (Lepidoptera: Arctiidae). Journal of Economic Entomology, 86, 334–339.Google Scholar
  65. Jarrett, P. & Stephenson, M. (1990). Plasmid transfer between strains of Bacillus thuringiensis infecting Galleria mellonella and Spodoptera littoralis. Applied and Environmental Microbiology, 56, 1608–1614.PubMedGoogle Scholar
  66. Kelada, N.L. & Shaker, N. (1988). Toxicity of three chemical insecticides in combination with Bacillus spp. against mosquito larvae. Insect Science and its Application, 9, 229–231.Google Scholar
  67. Klein, M.G. & Jackson, T.A. (1992). Bacterial Diseases of Scarabs. In T.A. Jackson & T.R. Glare (Eds), Use of Pathogens in Scarab Pest Management (pp. 43–61 ). Andover, UK: Intercept.Google Scholar
  68. Koretskaya, N.G., Svetoch, O.E. & Dobritsa, A.P. (1989). Conjugative transfer of plasmids between Bacillus spp. Doklady, Biological Sciences, 303, 691–694.Google Scholar
  69. Kramer, V.L. (1990). Efficacy and persistence of Bacillus sphaericus, Bacillus thuringiensis var. israelensis, and methoprene against Culiseta incidens (Diptera: Culicidae) in tires. Journal of Economic Entomology 83, 1280–1285.PubMedGoogle Scholar
  70. Kreutzweiser, D.P., Holmes, S.B., Capell, S.S. & Eichenberg, D.C. (1992). Lethal and sublethal effects of Bacillus thuringiensis var. kurstaki on aquatic insects in laboratory bioassays and outdoor stream channels. Bulletin of Environmental Contamination and Toxicology, 49, 252–258.PubMedCrossRefGoogle Scholar
  71. Kreutzweiser, D.P., Capell, S.S. & Thomas, D.R. (1994). Aquatic insect responses to Bacillus thuringiensis var. kurstaki in a forest stream. Canadian Journal of Forest Research, 24, 2041–2049.CrossRefGoogle Scholar
  72. Kreutzweiser, D.P., Gringorten, J.L., Thomas, D.R. & Butcher, J.T. (1996). Functional effects of the bacterial insecticide Bacillus thuringiensis var. kurstaki on aquatic microbial communities. Ecotoxicology and Environmental Safety, 33, 271–280.PubMedCrossRefGoogle Scholar
  73. Krieg, A. & Langenbruch, G.A. (1981) Susceptibility of Arthropod Species to Bacillus thuringiensis. In H.D. Burges (Ed), Microbial Control of Pests and Diseases 1970–1980 (pp. 949). London, UK: Academic Press.Google Scholar
  74. Lacey, L.A. (1985). Effects of pH and storage temperature on spore activity and larvicidal activity of Bacillus sphaericus. Bulletin of the Society of Vector Ecologists, 10, 102–106.Google Scholar
  75. Larget, I. & de Barjac, H. (1981). Specificity and active principle of Bacillus thuringiensis var. israelensis. Bulletin de la Societe de Pathologie Exotique, 74, 216–227.Google Scholar
  76. Lecadet, M.M., Frachon, E., Dumanoir, V.C., Ripouteau, H., Hamon, S., Laurent, P. & Thiery, I. (1999). Updating the H-antigen classification of Bacillus thuringiensis. Journal of Applied Microbiology, 86,660–72.Google Scholar
  77. Leong, K.L.H., Cano, R.J. & Kubinski, A.M. (1980). Factors affecting Bacillus thuringiensis total field persistence. Environmental Entomology, 9, 593–599.Google Scholar
  78. Malyi, L.P., Krushchev, L.T., Likhovidov, V.E., Kuksenkov, V.M. & Sinchuk, I.V. (1978). The use of bacterial preparations against leaf-eating pests of oak. Lesnoe Khozyaistvo, 11, 84–85.Google Scholar
  79. Mathavan, S., Velpandi, A. & Johnson, J.C. (1987). Sub-toxic effects of Bacillus sphaericus 1593 M on feeding growth and reproduction of Laccotrephes griseus (Hemiptera: Nepidae). Experimental Biology, 46, 149–153.PubMedGoogle Scholar
  80. McNeill, M.R., Vittum, P.J. & Jackson, T.A. (2000). Serratia marcescens as a rapid indicator of Microctonus hyperodae oviposition activity in Listronotus maculicollis and potential application of the technique to host-specificity testing. Entomologia Experimentalis et Applicata, 95, 193–200.CrossRefGoogle Scholar
  81. Meadows, J., Gill, S.S. & Bone, L.W. (1990). Bacillus thuringiensis strains affect population growth of the free-living nematode Turbatrix aceti. Invertebrate Reproduction and Development, 17, 73–76.CrossRefGoogle Scholar
  82. Menon, A.S. & De Mestral, J. (1985) Survival of Bacillus thuringiensis var. kurstaki in waters. Water Air and Soil Pollution, 25, 265–274.Google Scholar
  83. Mian, L.S. & Mulla, M.S. (1983). Factors influencing activity of the microbial agent Bacillus sphaericus against mosquito larvae. Bulletin of the Society of Vector Ecologists, 8, 128–134.Google Scholar
  84. Miller, J.C. (1990). Field assessment of the effects of a microbial pest control agent on nontarget Lepidoptera. Bulletin of the Entomological Society of America, 36, 135–139.Google Scholar
  85. Miller, J.C. (1992). Effects of a microbial insecticide, Bacillus thuringiensis kurstaki, on nontarget Lepidoptera in a spruce budworm-infested forest. Journal of Research on the Lepidoptera, 29, 267–276.Google Scholar
  86. Milner, R.J. (1981). Identification of the Bacillus popilliae group of insect pathogens. In H.D. Burges (Ed.), Microbial Control of Pest and Plant Diseases 1970–1980 (pp. 45–59 ). London, UK: Academic Press.Google Scholar
  87. Mittal, P.K., Adak, T. & Sharma, V.P. (1994). Comparative toxicity of certain mosquitocidal compo&s to larvivorous fish, Poecilia reticulata. Indian Journal of Malariology, 31, 43–47.Google Scholar
  88. Miura, T., Takahashi, R.M. & Mulligan, F.S. (1982). Impact of the use of candidate bacterial mosquito larvicides on some selected aquatic organisms. Proceedings and papers of the Forty-ninth Annual Conference of the California Mosquito and Vector Control Association, 1981. 45–48.Google Scholar
  89. Mohamed, A.I., Young, S.Y. & Yearian, W.C. (1983). Effects of microbial agent-chemical pesticide mixtures on Heliothis virescens (F.) (Lepidoptera: Noctuidae). Environmental Entomology, 12, 478–481.Google Scholar
  90. Muller-Cohn, J., Marchal, M., Chaufaux, J., Gilois, N. & Lereclus, D. (1994). Segregational stability and conjugation of a Bacillus thuringiensis plasmid in artificial media, soil microcosms and insects. Proceedings of the 6 6 International Colloquium on Invertebrate Pathology, Montpellier, France. p. 36.Google Scholar
  91. Nagy, L.R. & Smith, K.G. (1997). Effects of insecticide-induction reduction in lepidopteran larvae on reproductive success of hooded warblers. Auk, 114, 619–627.CrossRefGoogle Scholar
  92. Nakamura, L.K. (2000). Phylogeny of Bacillus sphaericus-like organisms. International Journal of Systematic and Evolutionary Microbiology, 50, 1715–1722.PubMedGoogle Scholar
  93. Nealis, V. & Van Frankenhuyzen, K. (1990). Interactions between Bacillus thuringiensis Berliner and Apanteles fumiferanae Vier. (Hymenoptera: Braconidae), a parasitoid of the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). Canadian Entomologist., 122, 585–594.Google Scholar
  94. Nealis, V.G., van Frankenhuyzen, K. & Cadogan, B.L. (1992). Conservation of spruce budworm parasitoids following application of Bacillus thuringiensis var. kurstaki Berliner. Canadian Entomologist, 124, 1085–1092.CrossRefGoogle Scholar
  95. Neuvglise, C., Brygoo, Y. & Riba, G. (1997). 28s rDNA group-I introns: a powerful tool for identifying strains of Beauveria brongniartii. Molecular Ecology, 6, 373–381.Google Scholar
  96. Nguyen, T.T.H., Su, T.Y. & Mulla, M.S. (1999). Mosquito control and bacterial flora in water enriched with organic matter and treated with Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus formulations. Journal of Vector Ecology, 24, 138–153.Google Scholar
  97. Nyouki, F.F.R., Fuxa, J.R. & Richter, A.R. (1996). Spore-toxin interactions and sublethal effects of Bacillus thuringiensis in Spodoptera frugiperda and Pseudoplusia includens (Lepidoptera: Noctuidae). Journal of Entomological Science, 31, 52–62.Google Scholar
  98. O’Callaghan, M. & Jackson, T.A. (1993a). Adult grass grub dispersal of Serratia entomophila. Proceedings of the 46th New Zealand Plant Protection Conference: 235–236.Google Scholar
  99. O’Callaghan M. & Jackson, T.A. (1993b). Isolation and enumeration of Serratia entomophila - a bacterial pathogen of the New Zealand grass grub, Costelytra zealandica. Journal of Applied Bacteriology 75, 307–314.CrossRefGoogle Scholar
  100. O’Callaghan, M., Jackson, T.A. & Glare, T.R. (1997). Serratia entomophila bacteriophages–host range determination and preliminary characterisation. Canadian Journal of Microbiology 43, 1069–1073.PubMedCrossRefGoogle Scholar
  101. O’Callaghan, M., Barlow, N.D. and Jackson, T.A. (1999). The ecology of grass grub pathogenic Serratia spp. in New Zealand pastures. Proc. Australasian Invertebrate Ecology Conf: 85–91.Google Scholar
  102. Orduz, S. & Axtell, R.C. (1991). Compatibility of Bacillus thuringiensis var. israelensis and Bacillus sphaericus with the fungal pathogen Lagenidium giganteum (Oomycetes: Lagenidiales). Journal of the American Mosquito Control Association, 7, 188–193.PubMedGoogle Scholar
  103. Orekhov, D.A., Grimai’ skii, V.I. & Lozinskii, V.A. (1978). Ants - vectors of infection. Zaschc. Rast., 9, 25.Google Scholar
  104. Ozino-Marletto, O.I., Arzone, A. & Marletto, F. (1972). Tests of infection of Apis mellifera ligustica Spinola with increasing doses of Bacillus thuringiensis dendrolimus Talalaev. Annali della Faculta di Scienze Agrarie della Universita degli Studi di Torino, 8, 157–172.Google Scholar
  105. Palomar, J; Guasch, J.F.; Regue, M. and Vinas, M. (1990). The effect of nuclease on transformation efficiency in Serratia marcescens. FEMS Microbiology Letters, 69, 255–258.Google Scholar
  106. Peacock, J.W., Schweitzer, D.F., Carter, J.L. & Dubois, N.R. (1998). Laboratory assessment of the effects of Bacillus thuringiensis on native Lepidoptera. Environmental Entomology, 27, 450–457.Google Scholar
  107. Pedersen, J.C., Damgaard, P.H., Eilenberg, J. & Hansen, B.M. (1995). Dispersal of Bacillus thuringiensis var. kurstaki in an experimental cabbage field. Can. J. Microbiol., 41, 118–125.CrossRefGoogle Scholar
  108. Pettersson, B., Rippere, K.E., Yousten, A.A. & Priest, F.G. (1999). Transfer of Bacillus lentimorbus and Bacillus popilliae to the genus Paenibacillus with emended descriptions of Paenibacillus lentimorbus comb. nov. and Paenibacillus popilliae comb. nov. International Journal of Systematic Bacteriology, 49, 531–540.PubMedCrossRefGoogle Scholar
  109. Poopathi, S., Mani, T.R., Rao, D.R., Baskaran, G. & Kabilan, L. (1999). Evaluation of synergistic interaction between Bacillus sphaericus and Bacillus thuringiensis var. israelensis against Culex quinquefasciatus resistant and susceptible to B. sphaericus 1593M. Journal of Ecobiology, 11, 289–298.Google Scholar
  110. Rao, B.M. & Krishnayya, P.V. (1996). Effect of diflubenzuron and Bacillus thuringiensis var. kurstaki baits on the growth and development of Spodoptera litura (Fab.) larvae. Pesticide Research Journal, 8, 80–83.Google Scholar
  111. Reanney, D.C., Roberts, W.P. & Kelly, W.J. (1982). Genetic interactions among microbial communities. In A.T. Bull & J.H. Slater (Eds.) Microbial Interactions and Communities (pp 287–322 ). New York, USA: Academic Press.Google Scholar
  112. Riddick, E.W. & Mills, N.J. (1995). Seasonal activity of carabids (Coleoptera: Carabidae) affected by microbial and oil insecticides in an apple orchard in California. Environmental Entomology, 24, 361–366.Google Scholar
  113. Ridley, G.S., Bain, J., Bulman, L.S., Dick, M.A. & Kay, M.K. (2000). Threats to New Zealand’s indigenous forests from exotic pathogens and pests. Science for Conservation. No. 142, 67 pp.Google Scholar
  114. Rippere, K.E., Johnson, J.L. & Yousten, A.A. (1997). DNA similarities among mosquito-pathogenic and nonpathogenic strains of Bacillus sphaericus. International Journal of Systematic Bacteriology, 47, 214–216.CrossRefGoogle Scholar
  115. Robert, L.L., Perich, M.J., Schlein, Y. & Jacobson, J.L. (1998). Bacillus sphaericus inhibits hatching of phlebotomine sand fly eggs. Journal of the American Mosquito Control Association, 14, 351–352.PubMedGoogle Scholar
  116. Rodenhouse, N.L. & Holmes, R.T. (1992). Results of experimental and natural food reductions for breeding black-throated blue warblers. Ecology 73, 357–372.CrossRefGoogle Scholar
  117. Sample, B.E., Butler, L., Zivkovich, C., Whitmore, R.C. & Reardon, R. (1996). Effects of Bacillus thuringiensis Berliner var. kurstaki and defoliation by the gypsy moth (Lymantria dispar (L.) (Lepidoptera: Lymantriidae)) on native arthropods in West Virginia. Canadian Entomologist, 128, 573–592.CrossRefGoogle Scholar
  118. Sayaboc, A.S., Raros, R.S. & Raros, L.C. (1973). The ab&ance of predatory and saprophagous acarines associated with decomposing rice stubble with a consideration of the effects of insecticide residues. Philippine Entomologist, 2, 375–383.Google Scholar
  119. Schmid, A. (1975). Interaction between the specific granulosis virus and two bacterial preparations in larvae of Zeiraphera diniana. Mitteilungen der Schweizerischen Entomologischen Gesellschaft, 48, 173–179.Google Scholar
  120. Singer, S. (1985). Bacillus sphaericus (bacteria). Bulletin, American Mosquito Control Association., No. 6, 123–131.Google Scholar
  121. Sklodowski, J.J.W. (1996). Communities of epigeic insects (Col. Carabidae) one year after spraying the nun moth with the preparations Trebon, Decis, Foray and Dimilin. Sylwan, 140, 83–97.Google Scholar
  122. Skovmand, O., Hoegh, D., Pedersen, H.S. & Rasmussen, T. (1997). Parameters influencing potency of Bacillus thuringiensis var. israelensis products. Journal of Economic Enomology, 90, 361–9.Google Scholar
  123. Smith, R.A. & Barry, J.W. (1998). Environmental persistence of Bacillus thuringiensis spores following aerial application. Journal of Invertebrate Patholology, 71, 263–267.CrossRefGoogle Scholar
  124. Stahly, D.P., Andrews, R.E. & Yousten, A.A. (1991). The genus Bacillus: Insect Pathogens. In A. Balows, H.G. Trüper, M. Dworkin, W. Harder, & K.H. Schleifen (Eds.) The Procaryotes. New York, USA: Springer-Verlag.Google Scholar
  125. Stewart, J.G., L&, J.E. & Thompson, L.S. (1991). Factors affecting the efficacy of Bacillus thuringiensis var. san diego against larvae of the Colorado potato beetle. Proceedings of the Entomological Society of Ontario, 122, 21–25.Google Scholar
  126. St Julian, G., Bulla, L.A. Jr. & Detroy, R.W. (1978). Stored Bacillus popilliae spores and their infectivity against Popillia japonica larvae. Journal of Invertebrate Pathology, 32, 258–263.CrossRefGoogle Scholar
  127. Su, T.Y. & Mulla, M.S. (1999). Microbial agents Bacillus thuringiensis ssp. israelensis and Bacillus sphaericus suppress eutrophication, enhance water quality, and control mosquitoes in microcosms. Environmental Entomology, 28, 761–767.Google Scholar
  128. Tapp, H. & Stotzky, G. (1995). Insecticidal activity of the toxins from Bacillus thuringiensis subspecies kurstaki and tenebrionis adsorbed and bo& on pure and soil clays. Applied and Environmental Microbiology, 61, 1786–1790.PubMedGoogle Scholar
  129. Theunis, W & Teuriara, N. (1998). Biological control of Papuana huebneri (Coleoptera, Scarabaeidae) in Kiribafield trials with Metarhizium anisopliae and Bacillus popilliae. Journal of South Pacific Agriculture, 5, 46–51.Google Scholar
  130. Thiery, I. & Hamon, S. (1998). Bacterial control of mosquito larvae: investigation of stability of Bacillus thuringiensis var. israelensis and Bacillus sphaericus standard powders. Journal of the American Mosquito Control Association, 14, 472–476.PubMedGoogle Scholar
  131. Thomas, D.J.L, Morgan, J.A.W., Whipps, J.M. & Sa&ers, J.R. (2001). Plasmid transfer between Bacillus thuringiensis subsp. israelensis strains in laboratory culture, river water, and dipteran larvae. Applied and Environmental Microbiology, 67, 330–338.PubMedCrossRefGoogle Scholar
  132. Thurston, G., Kaya, H.K. & Gaugler, R. (1994). Characterizing the enhanced susceptibility of milky disease-infected scarabaeid grubs to entomopathogenic nematodes. Biological Control, 4, 67–73.CrossRefGoogle Scholar
  133. Ticehurst, M., Fusco, R.A. & Blumenthal, E.M. (1982). Effects of reduced rates of Dipel 4L, Dylox 1.5 Oil, and Dimilin W-25 on Lymantria dispar (L.) (Lepidoptera: Lymantriidae), parasitism, and defoliation. Environmental Entomology, 11, 1058–1062.Google Scholar
  134. Vago, C. & Burges, H.D. (1964). International symposium on the identification and assay of viruses and Bacillus thuringiensis Berliner used for insect control. Journal of Insect Pathology, 6, 544–547.Google Scholar
  135. Valadares de Amorim, G.V., Whittome, B., Shore, B., & Levin, D.B. (2001). Identification of Bacillus thuringiensis subsp. kurstaki strain HD1-like bacteria from environmental and human samples after aerial spraying of Victoria, British Colombia, Canada, with Foray 48B. Applied and Environmental Microbiology, 67, 1035–1043.PubMedCrossRefGoogle Scholar
  136. Vandenberg, J.D. (1990). Safety of four entomopathogens for caged adult honey bees (Hymenoptera: Apidae). Journal of Economic Entomology, 83, 755–759.Google Scholar
  137. Vilas-Bôas, G.F.L.T, Vilas-Boas, L.A., Lereclus, D. & Arantes, O.M.N. (1998). Bacillus thuringiensis conjugation &er environmental conditions. FEMS Microbiology Ecology, 25, 369–374.CrossRefGoogle Scholar
  138. Villas-Boas, G.L. & Franca, F.H. (1996). Use of the parasitoid Trichogramma pretiosum for control of Brazilian tomato pinworm in tomato grown in the greenhouse. Horticultura Brasileira, 14, 223–225.Google Scholar
  139. Visser, S., Addison, J.A. & Holmes, S.B. (1994). Effects of Dipel 176, a Bacillus thuringiensis subsp. kurstaki (B.t.k.) formulation, on the soil microflora and the fate of B.t.k. in an acid forest soil: a laboratory study. Canadian Journal of Forest Research, 24, 462–471.CrossRefGoogle Scholar
  140. Wagner, D.L., Peacock, J.W., Carter, J.L. & Talley, S.E. (1996). Field assessment of Bacillus thuringiensis on nontarget Lepidoptera. Environmental Entomology, 25, 1444–1454.Google Scholar
  141. Wernicke, K. & Funke, W. (1995). Impact of Dipel (Bacillus thuringiensis var. kurstaki) and Bí01020 (Metarhizium anisopliae) on arthropods with soil-living developmental stages). Mitteilungen der Deutschen Gesellschaft fur Allgemeine & Angewandte Entomologie, 10, 207–210.Google Scholar
  142. West, A.W. (1984). Fate of the insecticidal, proteinaceous parasporal crystal of Bacillus thuringiensis in soil. Soil Biology and Biochemistry, 16, 357–360.CrossRefGoogle Scholar
  143. West, A.W., Burges, H.D., Dixon, T.J. & Wybom, C.H. (1985). Survival of Bacillus thuringiensis and Bacillus cereus spore inocula in soil: effects of pH, moisture, nutrient availability and indigenous microorganisms. Soil Biology and Biochemistry, 17, 657–665.CrossRefGoogle Scholar
  144. Whaley, W.H., Anhold, J. & Schaalje, G.B. (1998). Canyon drift and dispersion of Bacillus thuringiensis and its effects on select nontarget lepidopterans in Utah. Environmental Entomology, 27, 539–548.Google Scholar
  145. Wilcks, A., Jayaswal, N., Lereclus, D. & Andrup, L. (1998). Characterization of plasmid pAW63, a second self-transmissible plasmid in Bacillus thuringiensis subsp. kurstaki HD73. Microbiology Reading, 144, 1263–1270.CrossRefGoogle Scholar
  146. Wilson, A.G.L., Desmarchelier, J.M. & Malafant, K. (1983). Persistence on cotton foliage of insecticide residues toxic to Heliothis larvae. Pesticide Science, 14, 623–633.CrossRefGoogle Scholar
  147. Wirth, M.C., Federici, B.A. & Walton, W.E. (2000). Cyt1A from Bacillus thuringiensis synergizes activity of Bacillus sphaericus against Aedes aegypti (Diptera: Culicidae). Applied and Environmental Microbiology, 66, 1093–1097.PubMedCrossRefGoogle Scholar
  148. Wiwat, C., Panbangred, W. & Bhumiratana, A. (1990). Transfer of plasmids and chromosomal genes amongst subspecies of Bacillus thuringiensis. Journal of Industrial Microbiology, 6, 19–27.CrossRefGoogle Scholar
  149. Yara, K., Kunimi, Y. & Iwahana, H. (1997). Comparative studies of growth characteristic and competitive ability in Bacillus thuringiensis and Bacillus cereus in soil. Applied Entomology and Zoology, 32, 625–634.Google Scholar
  150. Yuan, Z.M., Zhang, Y.M., Nielsen-LeRoux, C. & Sylviane, H. (1999). Analysis of crystal protein from Bacillus thuringiensis subsp. israelensis recombinant containing binary toxin gene and its toxicity. Journal of Microbiology, 19, 1–5.Google Scholar
  151. Yudina, T.G. & Burtseva, L.I. (1997). Activity of delta-endotoxins of four Bacillus thuringiensis subspecies against prokaryotes. Microbiology New York, 66, 17–22.Google Scholar
  152. Zuckerman, B.M. Dicklow; B.M., & Marban-Mendoza, N. (1994). Nematocidal Bacillus thuringiensis biopesticide. US patent number 4948734.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Travis R. Glare
  • Maureen O’Callaghan

There are no affiliations available

Personalised recommendations