Advertisement

Entomopathogenic Fungi as Classical Biological Control Agents

  • Ann E. Hajek
  • Italo Delalibera Junior
  • Linda Butler
Chapter
Part of the Progress in Biological Control book series (PIBC, volume 1)

Abstract

Classical biological control has been defined as the intentional introduction of an exotic biological control agent for permanent establishment and long-term pest control’ (Eilenberg et al., 2001). This technique has most often been used to target arthropod pests and weeds that have been introduced to new areas. It has predominantly focussed on use of herbivores or arthropod parasitoids and predators while it has been used relatively rarely for entomopathogens. Classical biological control releases using parasitoids and predators between 1888 and 1992 included 5500 programs (Greathead, 1995) while the last estimate for classical biological control using pathogens was only 50 programs prior to 1987 (Fuxa, 1987). Perhaps pathogens have been used little due to lack of microbiological training among practitioners and lack of knowledge regarding both the endemic and exotic pathogenic microbiota.

Keywords

Biological Control Natural Enemy Biological Control Agent ENTOMOPATHOGENIC Fungus Gypsy Moth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous 1919. Notes on insects in Seychelles. Review of Applied Entomology, Ser. A 7: 483–484.Google Scholar
  2. Bidochka, M. J. 2001. Monitoring the fate of biocontrol fungi. In Fungal Biocontrol Agents: Progress, Problems and Potential. T. Butt, C. Jackson, & N. Magan (Eds.), CABI Publ., Wallingford, UK, pp. 193–218.Google Scholar
  3. Bidochka, M. J., Walsh, S. R. A., Ramos, M. E., St. Leger, R. J., Silver, J. C., & Roberts, D. W. 1995. Pathotypes of the Entomophaga grylli species complex of grasshopper pathogens differentiated with random amplification of polymorphic DNA and cloned-DNA probes. Applied and Environmental Microbiology 61: 556–560.PubMedGoogle Scholar
  4. Boucias, D. G., & Pendland, J. C. 1998. Principles of Insect Pathology. Kluwer Acad. Publ., Boston.Google Scholar
  5. Butler, L., Chrislip, G. A., Kondo, V. A., & Townsend, E. C. 1997. Effect of diflubenzuron on nontarget canopy arthropods in closed, deciduous watersheds in a central Appalachian forest. Journal of Economic Entomology 90: 784–794.Google Scholar
  6. Carruthers, R. J., & Onsager, J. A. 1993. Perspective on the use of exotic natural enemies for biological control of pest grasshoppers (Orthoptera: Acrididae). Environmental Entomology 22: 885–903.Google Scholar
  7. Delalibera Jr., I. 2002. Investigations toward implementation of Neozygites tanajoae sp. nov. as a classical biological control agent against the cassava green mite in Africa. Ph.D. Thesis, Cornell University.Google Scholar
  8. Delalibera Jr., I., Gomez, D. R. S., Moraes, G. J. de, Alencar, J. A. de, & Araujo W. F. 1992. Infection of Mononychellus tanajoa (Acari Tetranychidae) by the fungus Neozygites sp. (Entomophthorales) in northeastern Brazil. Florida Entomologist 75: 145–147.CrossRefGoogle Scholar
  9. DeLoach, C. J. 1976. Considerations in introducing foreign biotic agents to control native weeds of rangelands. In Proceedings of the 4th International Symposium, Biological Control of Weeds, Gainesville, FL, USA, pp. 39–50.Google Scholar
  10. Eilenberg, J., Hajek, A. E., & Lomer, C. 2001. Suggestions for unifying the terminology in biological control. BioControl 46: 387–400.CrossRefGoogle Scholar
  11. Fetter-Lasko, J. L., & Washino, R. K. 1977. A three year study of the ecology of Lagenidium giganteum, infections of Culex tarsalis in California. Proceedings and Papers of the Annual Conference of the California Mosquito and Vector Control Association 45: 106.Google Scholar
  12. Federici, B. A. 1981. Mosquito control by the fungi Culicinomyces, Lagenidium and Coelomomyces. In Microbial Control of Pests and Plant Diseases, 1970–1980. H. D. Burges (Ed.), Academic Press, London, pp. 555–572.Google Scholar
  13. Ferguson, D. C. 1978. Noctuoidea (in part), Lymantriidae. In The Moths of North America. Fasc. 22.2. R. B. Dominick, et al. (Eds.), E. B. Classey, London and The Wedge Entomological Research Foundation, pp. 1–110.Google Scholar
  14. Follett, P. A., & Duan, J. J. 2000. Nontarget Effects of Biological Control. Kluwer Acad. Publ., Dordrecht, NL.CrossRefGoogle Scholar
  15. Fuxa, J. R. 1987. Ecological considerations for the use of entomopathogens in IPM. Annual Review of Entomology 32: 225–251.CrossRefGoogle Scholar
  16. Glare, T. R., & Milner, R. J. 1991. Ecology of entomopathogenic fungi. In Handbook of Applied Mycology, vol. 2. D. K. Arora, L. Ajello & K. G. Mukerji (Eds.), Dekker, New York, pp. 547–612.Google Scholar
  17. Goettel, M. S., & Hajek, A. E. 2001. Evaluation of non-target effects of pathogens used for management of arthropods. In Evaluating Indirect Ecological Effects of Biological Control. E. Wajnberg, J. K. Scott, & P. C. Quimby (Eds.), CABI Publ., Wallingford, UK, pp. 81–97.Google Scholar
  18. Goettel, M. S., Hajek, A. E., Siegel, J. P., & Evans, H. D. 2001. Safety of fungal biocontrol agents. In Fungi as Biocontrol Agents: Progress, Problems and Potential. T. M. Butt, C. W. Jackson, & N. Magan (Eds.), CABI Publ., Wallingford, UK, pp. 347–375.Google Scholar
  19. Greathead, D. J. 1995. Benefits and risks of classical biological control. In Biological Control: Benefits and Risks. H. M. T. Hokkanen, & J. M. Lynch (Eds.), Cambridge Univ. Press, Cambridge, UK, pp. 53–63.CrossRefGoogle Scholar
  20. Hajek, A. E. 1999. Pathology and epizootiology of the lepidoptera-specific mycopathogen Entomophaga maimaiga. Microbiology and Molecular Biology Reviews 63: 814–835.PubMedGoogle Scholar
  21. Hajek, A. E. 2001. Larval behavior in Lymantria dispar increases risk of fungal infection. Oecologia 126: 285–291.CrossRefGoogle Scholar
  22. Hajek, A.E., & Butler, L. 2000. Predicting the host range of entomopathogenic fungi. In Nontarget Effects of Biological Control. P. A. Follett, & J. J. Duan (Eds.), Kluwer Acad. Publ., Dordrecht, NL, Pp. 263–276.CrossRefGoogle Scholar
  23. Hajek, A. E., & Goettel, M. S. 2000. Guidelines for evaluating effects of entomopathogens on non-target organisms. In Field Manual of Techniques in Invertebrate Pathology, L. A. Lacey & H. K. Kaya (Eds.), Kluwer Acad. Publ., Dordrecht, NL, pp. 847–868.Google Scholar
  24. Hajek, A. E., Butler, L., & Wheeler, M. M. 1995. Laboratory bioassays testing the host range of the gypsy moth fungal pathogen Entomophaga maimaiga. Biological Control 5: 530–544.CrossRefGoogle Scholar
  25. Hajek, A. E., Butler, L., Walsh, S. R. A., Silver, J. C., Hain, F. P., Hastings, F. L., ODell, T. M., and Smitley, D. R. 1996. Host range of the gypsy moth (Lepidoptera: Lymantriidae) pathogen Entomophaga maimaiga (Zygomycetes: Entomophthorales) in the field versus laboratory. Environmental Entomology 25: 709–721.Google Scholar
  26. Hajek, A. E., Butler, L., Liebherr, J. K., & Wheeler, M. M. 2000. Risk of infection by the fungal pathogen Entomophaga maimaiga among Lepidoptera on the forest floor. Environmental Entomology 29: 645–650.CrossRefGoogle Scholar
  27. Hajek, A. E., Delalibera Jr., I., & McManus, M. L. 2000. Introduction of exotic pathogens and documentation of their establishment and impact. In Field Manual of Techniques in Invertebrate Pathology, L. A. Lacey & H. K. Kaya (Eds.), Kluwer Acad. Publ., Dordrecht, NL, pp. 339–369.Google Scholar
  28. Hajek, A. E., Hodge, K. T., Liebherr, J. K., Day, W. H., & Vandenberg, J. D. 1996. Use of RAPD analysis to trace the origin of the weevil pathogen Zoophthora phytonomi in North America. Mycological Research 100: 349–355.CrossRefGoogle Scholar
  29. Harper, J. 1978. Introduction and colonization of entomopathogens. In Microbial Control of Insect Pests: Future Strategies in Pest Management Systems. G. E. Allen, C. M. Ignoffo & R. P. Jaques (Eds.), NSF-USDA-Univ. Florida Workshop, pp. 3–13.Google Scholar
  30. Hodge, K. T., Sawyer, A. J., & Humber, R. A. 1995. RAPD-PCR for identification of Zoophthora radicans isolates in biological control of potato leafhopper. J. Invertebrate Pathology 65: 1–9.CrossRefGoogle Scholar
  31. Hountondji, F. C., De Nardo, E. A. B. & Tamai, M. A. 1995. Nâo susceptibilidade de abelhas a infecçâo pelo fungo Neozygites sp. agente de controle do acaro verde da mandioca. In Anais do 15 Congresso de Entomologia. Caxambu, MG, Brazil, p. 610.Google Scholar
  32. Hountondji, F. C. C., Yaninek, J. S., Moraes, G. J. d., & Oduor, G. J. 2002. Host specificity of the cassava green mite pathogen Neozygites floridana. BioControl 47: 61–66CrossRefGoogle Scholar
  33. Humber, R. A. 1999. USDA-ARS Collection of Entomopathogenic Fungal Cultures (ARSEF ). http://www.ppru.cornell.edu/Mycology/ARSEF_Culture_Collection.htm.
  34. Humber, R. A. 2000. Fungal pathogens and parasites of insects. In Applied Microbial Systematics F.G. Priest & M. Goodfellow (Eds.), Kluwer Acad. Publ., Dordrecht, NL, pp. 203–230.Google Scholar
  35. Jones, W. O. 1959. Manioc in Africa. Stanford Univ. Press, California.Google Scholar
  36. Laird, M. 1967. A coral island experiment: A new approach to mosquito control. World Health Organization Chronicles 21: 18.Google Scholar
  37. Laird, M. 1971. Microbial control of arthropods of medical importance. In Microbial Control of Insects and Mites. H.D. Burges & N.W. Hussey (Eds.), Academic Press, London, pp. 387–406.Google Scholar
  38. Lockwood, J. A. 2000. Nontarget effects of biological control: What are we trying to miss? In Nontarget Effects of Biological Control. P. A. Follett & J. J. Duan (Eds.), Kluwer Acad. Publ., Dordrecht, NL, pp. 15–30.CrossRefGoogle Scholar
  39. Lockwood, J. A., Howarth, F. G., & Purcell, M. F. 2001. Balancing Nature: Assessing the Impact of Importing Non-native Biological Control Agents (An International Perspective). Entomol. Soc. Amer., Lanham, MD.Google Scholar
  40. Maddox, J. V., McManus, M. L., Jeffords, M. R., & Webb, R. E. 1992. Exotic insect pathogens as classical biological control agents with an emphasis on regulatory considerations. In Selection Criteria and Ecological Consequences of Importing Natural Enemies. W.C. Kauffmann, & J.E. Nechols (Eds.), Entomol. Soc. Amer., Lanham, MD, pp. 27–39.Google Scholar
  41. Malakar, R, Elkinton, J. S., Carroll, S. D., & D’Amico, V. (1999a) Interactions between two gypsy moth (Lepidoptera: Lymantriidae) pathogens: Nucleopolyhedrovirus and Entomophaga maimaiga (Zygomycetes: Entomophthorales): Field studies and a simulation model. Biological Control 16: 189–198.CrossRefGoogle Scholar
  42. Malakar, R., Elkinton, J. S., Hajek, A. E., & Burand, J. P. (1999b) Within-host interactions of Lymantria dispar (Lepidoptera: Lymantriidae) nucleopolyhedrosis virus and Entomophaga maimaiga (Zygomycetes: Entomophthorales). Journal of Invertebrate Pathology 73: 91–100.PubMedCrossRefGoogle Scholar
  43. McCray Jr., E. M. Womeldorf, D. J., Husbands, R. C., & Eliason, D. A. 1973. Laboratory observations and field tests with Lagenidium against California mosquitoes. Proceedings and Papers of the Annual Conference of the California Mosquito and Vector Control Association 41: 123–128.Google Scholar
  44. McGuire, M.R., Maddox, J.V., & Armbrust, E.J. 1987a. An epizootic caused by Erynia radicans (Zygomycetes: Entomophthoraceae) isolated from Empoasca fabae (Homoptera: Cicadellidae). Journal of Invertebrate Pathology 50: 78–80.CrossRefGoogle Scholar
  45. McGuire, M.R., Maddox, J.V., & Armbrust, E.J. 1987b. Host range studies of an Erynia radicans strain (Zygomycetes: Entomophthorales) isolated from Empoasca fabae (Homoptera: Cicadellidae). Journal of Invertebrate Pathology 50: 75–77.CrossRefGoogle Scholar
  46. Miller, J. C. 2000. Monitoring the effects of Bacillus thuringiensis kurstaki on nontarget Lepidoptera in woodlands and forests in western Oregon. In Nontarget Effects of Biological Control. P. A. Follett, & J. J. Duan (Eds.), Kluwer Acad. Publ., Dordrecht, NL, pp. 277–286.CrossRefGoogle Scholar
  47. Moraes, G. J. de., & Delalibera Jr., I. 1992. Specificity of a strain of Neozygites sp. (Zygomycetes: Entomophthorales) to Mononychellus tanajoa (Acari: Tetranychidae). Experimental & Applied Acarology 14: 89–94.CrossRefGoogle Scholar
  48. Moraes, G. J. de, Alencar, J. A., Wenzel Neto, F., & Mergulhao, S. M. R. 1990. Explorations for natural enemies of the cassava green mite in Brazil. In Symposium of the International Society of Tropical Root Crops. R. H. Howeler ( Ed. ), Bangkok, pp. 351–353.Google Scholar
  49. Moraes, G. J. de., Mesa, N. C., & Braun, A. 1991. Some phytoseiid mites of Latin America (Acari: Phytoseiidae). International Journal of Acarology 17: 117–139.CrossRefGoogle Scholar
  50. Moraes, G. J. de, Alencar, J. A., Lima, J. L. S. de, Yaninek, J. S., & Delalibera Jr., I. 1993. Alternative plant habitats for common phytoseiid predators of the cassava green mite (Acari: Phytoseiidae, Tetranychidae) in northeast Brazil. Experimental & Applied Acarology 17: 77–90.Google Scholar
  51. Papierok, B., Valadâo, B., Tôrres, L., & Arnault, M. 1984. Contribution to the study of the specificity of the entomopathogenic fungus Zoophthora radicans (Zygomycetes: Entomophthorales). Entomophaga 29: 109–119.CrossRefGoogle Scholar
  52. Parker, M. A. 1984. Local food depletion and the foraging behavior of a specialist grasshopper, Hesperotettix viridis. Ecology 65: 824–835.CrossRefGoogle Scholar
  53. Pell, J., Eilenberg, J., Hajek, A. E., & Steinkraus, D. C. 2001. Exploring the potential of Entomophthorales in integrated crop management. In Fungal Biocontrol Agents: Progress, Problems and Potential. T. Butt, C. Jackson, & N. Magan (Eds.), CABI Publ., Wallingford, UK, pp. 71–153.Google Scholar
  54. Ramoska, W. A., Hajek, A. E., Ramos, M. E., & Soper, R. S. 1988. Infection of grasshoppers (Orthoptera: Acrididae) by members of the Entomophaga grylli species complex (Zygomycetes: Entomophthorales). Journal of Invertebrate Pathology 52: 309–313.CrossRefGoogle Scholar
  55. Shimazu, M., Sato, H., & Maehara, N. 2002. Density of the entomopathogenic fungus, Beauveria bassiana Vuillemin (Deuteromycotina: Hyphomycetes) in forest air and soil. Applied Entomology and Zoology 37: 19–26.CrossRefGoogle Scholar
  56. Soper, R. S., Shimazu, M., Humber, R. A., Ramos, M. E., & Hajek, A. E. 1988. Isolation and characterization of Entomophaga maimaiga sp. nov., a fungal pathogen of gypsy moth, Lymantria dispar, from Japan. Journal of Invertebrate Pathology, 51: 229–241.CrossRefGoogle Scholar
  57. Speare, A. T., & Colley, R. H. 1912. The Artificial Use of the Brown-tail Fungus in Massachusetts, with Practical Suggestions for Private Experiment, and a Brief Note on a Fungous Disease of the Gypsy Caterpillar. Wright & Potter, Boston.Google Scholar
  58. Squibbs, F. L. 1935. Work connected with insect pests and fungus diseases. Review of Applied Entomology, Ser. A 23: 241.Google Scholar
  59. Steinkraus, D. C., & Kramer, J. P. 1987. Susceptibility of sixteen species of Diptera to the fungal pathogen Entomophthora muscae (Zygomycetes: Entomophthoraceae). Mycopathologia 100: 55–63.CrossRefGoogle Scholar
  60. Stiling, P. 1990. Calculating the establishment rates of parasitoids in classical biological control. American Entomologist 36: 225–229.Google Scholar
  61. Valenti, M. A. (1998) Entomophaga maimaiga: Salvation from gypsy moth or fly in the ointment. American Entomologist 44: 20–22.Google Scholar
  62. Wajnberg, E., Scott, J. K., & Quimby, P. C. (Eds.) 2001. Evaluating Indirect Ecological Effects of Biological Control. CABI Publ., Wallingford, UK.Google Scholar
  63. Washino, R. K., Fetter, J. L., Fukushima, C. K., & Gonot, K. 1976. The establishment of Lagenidium giganteum, an aquatic fungal parasite of mosquitoes, three years after field introduction. Proceedings and Papers of the Annual Conference of the California Mosquito and Vector Control Association 44: 52.Google Scholar
  64. Yaninek, J. S., & Herren, H. R. 1988. Introduction and spread of the cassava green mite Mononychellus tanajoa (Bondar) (Acari: Tetranychidae) an exotic pest in Africa and the search for appropriate control methods: a review. Bulletin of Entomological Research 78: 1–13.CrossRefGoogle Scholar
  65. Yaninek, J. S., Moraes, G. J. de, & Markham, R. H. 1989. Handbook on the Cassava Green Mite (Mononychellus tanajoa) in Africa. Alphabyte, Rome.Google Scholar
  66. Yaninek, J. S., & Schulthess, F. 1993. Developing an environmentally sound plant protection for cassava in Africa. Agriculture, Ecosystems and Environment 46: 305–324.CrossRefGoogle Scholar
  67. Yaninek, J. S., Saizonou, S., Onzo, A., Zannou, I., & Gnanvossou, D. 1996. Seasonal and habitat variability in the fungal pathogens, Neozygites cf. floridana and Hirsutella thompsonii, associated with cassava mites in Benin, West Africa. Biocontrol Science and Technology 6: 23–33.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Ann E. Hajek
  • Italo Delalibera Junior
  • Linda Butler

There are no affiliations available

Personalised recommendations