Skip to main content

Modeling subsurface transport of microorganisms

  • Chapter
Environmental Hydrology

Part of the book series: Water Science and Technology Library ((WSTL,volume 15))

Abstract

The transport and fate of microorganisms in porous media was originally of interest because of concern for outbreaks of diseases caused by groundwater contaminated with pathogenic microorganisms (Craun, 1985). Transport of microorganisms is now also recognized to be important in fields as diverse as oil recovery (Jenneman et al., 1984) and biological control of plant root diseases (Parke et al., 1986; Tan et al., 1991). In-situ bioremediation of contaminated soil or aquifers using indigenous or exogenous bacteria has recently generated further interest in this topic, as well as in the simultaneous transport of microorganisms and biologically reactive solutes used by bacteria as substrates for growth (Baveye and Valocchi, 1989; Reynolds et al., 1989; Taylor and Jaffe, 1990c; Gannon et al., 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, J. 1969. ‘Chemoreceptors in bacteria’. Science. 166: 1588–1597.

    Article  Google Scholar 

  • Atkinson, B., and I. J. Davies. 1974. ‘The overall rate of substrate uptake (reaction) by microbial films: 1. A biological rate equation’. Trans. Inst. Chem. Eng. 52: 248–259.

    Google Scholar 

  • Bader, F. G. 1978. ‘Analysis of double-substrate limited growth’. Biotechnol. Bioeng. 20: 183–202.

    Article  Google Scholar 

  • Bales, R.C., S.R. Hinkle, T.W. Kroeger, K. Stocking and C.P. Gerba. 1991. ‘Bacteriophage adsorption during transport through porous media: Chemical perturbations and reversibility’. Environ. Sci. Technol. 25: 2088–2095.

    Article  Google Scholar 

  • Baveye, P., and A. J. Valocchi. 1989. ‘An evaluation of mathematical models of the transport of biologically reacting solutes in saturated soils and aquifers’. Water Resour. Res. 25: 1413–1421.

    Article  Google Scholar 

  • Bazin, M.J., P.T. Saunders, and J.I. Prosser. 1976, ‘Models of microbial interactions in the soil’. CRC Critical Rev. Microbiol. 4: 463–498.

    Google Scholar 

  • Bear, J. 1972. Dynamics of fluids in porous media. American Elsevier, New York.

    Google Scholar 

  • Berg, H. C., and D. A. Brown. 1972. ‘Chemotaxis in Escherichia coli analyzed by three-dimensional tracking’. Nature. 239: 500–504.

    Article  Google Scholar 

  • Biggar, J.W., and D.R. Nielsen. 1980. ‘Mechanisms of chemical movement in soils’. p. 213–227. In A. Banin and U. Kafkafi (ed.) Agrochemicals in soils. International Irrigation Information Centre, Bet Dagan, Israel.

    Google Scholar 

  • Bitton, G., N. Lahav, and Y. Henis. 1974. ‘Movement and retention of Klebsiella aerogenes in soil columns’. Plant Soil. 40: 373–380.

    Article  Google Scholar 

  • Bond, W.J. 1987. ‘Solute transport during unsteady, unsaturated soil water flow: The pulse input’. Aust. J. Soil Res. 25: 223–241.

    Article  Google Scholar 

  • Bond, W. J., and I. R. Phillips. 1990. ‘Approximate solutions for cation transport during unsteady, unsaturated soil water flow’. Water Resour. Res. 26: 2195–2205.

    Article  Google Scholar 

  • Bond, W. J., and D. E. Smiles. 1983. ‘Influence of velocity on hydrodynamic dispersion during unsteady soil water flow’. Soil Sci. Soc. Am. J. 47: 438–441.

    Article  Google Scholar 

  • Bouwer, H. 1984. ‘Elements of soil science and groundwater hydrology’. p. 9–38. In G. Bitton and C. P. Gerba (ed.) Groundwater pollution microbiology. Wiley-Interscience, New York.

    Google Scholar 

  • Bryers, J.D. 1988. ‘Modeling biofilm accumulation’. p. 109–144. In M.J. Bazin and J.I. Prosser (eds.) Physiological Models in Microbiology (vol. 2 ). CRC Press, Boca Raton. Fla.

    Google Scholar 

  • Butler, R. G., G. T. Orlob, and P. H. McGauhey. 1954. ‘Underground movement of bacterial and chemical pollutants’. J. Am. Water Works Assoc. 46: 97–111.

    Google Scholar 

  • Characklis, W. G. 1990. ‘Biofilm processes’. p. 195–231. In W. G. Characklis and K. C. Marshall (ed.) Biofilms. Wiley-Interscience, New York.

    Google Scholar 

  • Chen, Y.M., L.M. Abriola, P.J.J. Alvarez, P.J. Anid, and T.M. Vogel. 1992. ‘Modeling transport and biodegradation of benzene and toluene in sandy aquifer material: Comparisons with experimental measurements’. Water Resour. Res. 28: 1833–1847.

    Article  Google Scholar 

  • Cookson. J. T. 1970. ‘Removal of submicron particles in packed beds’. Environ. Sci. Technol. 4: 128–134.

    Google Scholar 

  • Corapcioglu, M. Y., and A. Haridas. 1984. ‘Transport and fate of microorganisms in porous media: A theoretical investigation’. J. Hydro!. 72: 149–169.

    Article  Google Scholar 

  • Corapcioglu, M. Y., and A. Haridas. 1985. ‘Microbial transport in soils and groundwater: A numerical model’. Adv. Water Resour. 8: 188–200.

    Article  Google Scholar 

  • Corpe, W. A. 1970. ‘Attachment of marine bacteria to solid surfaces’. p. 73–87. In R. S. Manly (ed.) Adhesion in biological systems. Academic Press, New York.

    Chapter  Google Scholar 

  • Crane, S. R., and J. A. Moore. 1984. ‘Bacterial pollution of groundwater: A review’. Water, Air and Soil Pollut. 22: 67–83.

    Article  Google Scholar 

  • Craun, G. F. 1985. ‘A summary of waterborne illness transmitted through contaminated groundwater’. J. Environ. Health. 48: 122–127.

    Google Scholar 

  • Cutler, D. W. 1919. ‘Observations on soil protozoa’. J. Agr. Sci. 9: 430–444.

    Article  Google Scholar 

  • Dabes, J.N., R.K. Finn, and C.R. Wilke. 1973. ‘Equations of substrate-limited growth: The case for Blackman kinetics’. Biotechnol. Bioeng. 15: 1159–1177.

    Article  Google Scholar 

  • Dahlquist, F.W., R Lovely, and D.E. Koshland. 1972. ‘Quantitative analysis of bacterial migration in chemoxis’. Nature New Biol. 236: 120–123.

    Article  Google Scholar 

  • Daniels, S. L. 1972. ‘The adsorption of microorganisms onto surfaces: A review’. Dev. Indust. Microbiol. 13: 211–253.

    Google Scholar 

  • Daniels, S. L. 1980. ‘Mechanisms involved in sorption of microorganisms to solid surfaces’. p. 7–58. In G. Bitton and K. C. Marshall (ed.) Adsorption of microorganisms to surfaces. Wiley-Interscience, New York.

    Google Scholar 

  • Deb, A. K. 1969. ‘Theory of sand filtration’. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 95: 399–422.

    Google Scholar 

  • Dickinson, R.A. 1991. ‘Problems with using existing transport models to describe microbial transport in porous media’. p. 21–47. In C.J. Hurst (ed.) Modeling the environmental fate of microorganismes. Am. Soc. Microbiol., Washington, D.C.

    Google Scholar 

  • Filmer, R. W., M. Felton, and T. Yamamoto. 1971. ‘Virus sized particle adsorption on soil: 1. Rate of adsorption’. p. 75–101. In V. Snoeyink (ed.) Proc. 13th Water Qual. Conf. Virus and Water Qual. Occurrence Control. University of Illinois, Urbana-Champaign, Illinois.

    Google Scholar 

  • Fontes, D. E., A. L. Mills, G. M.Hornberger, and J. S. Herman. 1991. ‘Physical and chemical factors influencing transport of microorganisms through porous media’. Appl. Environ. Microbiol. 57: 2473–2481.

    Google Scholar 

  • Gannon, J. T., Y. Tan, P. Baveye, and M. Alexander. 1991. ‘Effect of sodium chloride on transport of bacteria in a saturated aquifer material’. Appl. Environ. Microbiol. 57: 2497–2501.

    Google Scholar 

  • Gerba, C. P., C. Wallis, and J. L. Melnick. 1975. ‘Fate of wastewater bacteria and viruses in soil’. J. Irrig. Drain. Div. Proc. Am. Soc. Civ. Eng. 101: 157–174.

    Google Scholar 

  • Gerba, C. P., and G. Bitton. 1984. ‘Microbial pollutants: Their survival and transport pattern to groundwater’. p. 65–88. In G. Bitton and C. P. Gerba (ed.) Groundwater pollution microbiology. Wiley-Interscience, New York.

    Google Scholar 

  • Germann, P. F., M. S. Smith, and G. W. Thomas. 1987. ‘Kinematic wave approximation to the transport of Escherichia coli in the vadose zone’. Water Resour. Res. 23: 1281–1287.

    Article  Google Scholar 

  • Goldshmid, J., D. Zohar, Y. Argaman, and Y. Kott. 1973. ‘Effect of dissolved salts on the filtration of coliform bacteria in sand dunes’. p. 147–157. In S.H. Jenkins (ed.) Advances in water pollution research. Pergamon Press, New York.

    Google Scholar 

  • Hamdi, Y. A. 1974. ‘Vertical Movement of Rhizobia in soil’. Zbl. Bakt. Abt. II, Bd. 129: 373–377.

    Google Scholar 

  • Harvey, R. W., and S. P. Garabedian. 1991. ‘Use of colloid filtration theory in modeling movement of bacteria through a contaminated sandy aquifer’. Environ. Sci. Technol. 25: 178–185.

    Article  Google Scholar 

  • Hattori, T. 1973. Microbial life in the soil: An introduction. Marcel Dekker, New York.

    Google Scholar 

  • Hendricks, D. W., F. J. Post and D. R. Khairnar. 1979. ‘Adsorption of bacteria on soils: Experiments, thermodynamic rationale, and application’. Water, Air and Soil Pollu. 12: 219–232.

    Article  Google Scholar 

  • Hornberger, G.M., A.L. Mills, and J.S. Herman. 1992. ‘Bacterial transport in porous media: Evaluation of a model using laboratory observations’. Water Resour. Res. 28: 915–938.

    Article  Google Scholar 

  • Jenneman, G. E., R. M. Knapp. M. J. McInerney, D. E. Menzie, and D. E. Revus. 1984. ‘Experimental studies of in-situ microbial enhanced oil recovery’. Soc. Pet. Eng. J. 24: 33–37.

    Google Scholar 

  • Jury, W. A. 1982. ‘Simulation of solute transport using a transfer function model’. Water Resour. Res. 18: 363–368.

    Google Scholar 

  • Keller, E. F., and L. A. Segel. 1971. ‘Model for chemotaxis’. J. Theor. Biol. 30: 225–234.

    Article  Google Scholar 

  • Kirkham, D., and W. L. Powers. 1972. Advanced soil physics. Wiley-Interscience, New York.

    Google Scholar 

  • Krone, R.B., G.T. Orlob, and C. Hodgkinson. 1958. ‘Movement of coliform bacteria through porous media’. Sewage and Industrial Wastes. 30: 1–13.

    Google Scholar 

  • Kurath, G., and R. Y. Morita. 1983. ‘Starvation-survival physiological studies of a marine Pseudomonas sp.’. Appl. Environ. Microbiol. 45: 1206–1211.

    Google Scholar 

  • Marshall, K. C. 1967. ‘Electrophoretic properties of fast and slow growing species of Rhizobium’. Aust. J. Biol. Sci. 20: 429–438

    Google Scholar 

  • Marshall, K. C. 1975. ‘Clay mineralogy in relation to survival of soil bacteria’. Ann. Rev. Phytopathol. 13: 357–373.

    Article  Google Scholar 

  • Marshall, K. C. 1976. Interfaces in microbial ecology. Harvard University Press, Cambridge.

    Google Scholar 

  • Marshall, K. C. 1980. ‘Adsorption of microorganisms to soils and sediments’. p. 317–329. In G. Bitton and K. C. Marshall (ed.) Adsorption of microorganisms to surfaces. Wiley-Interscience, New York.

    Google Scholar 

  • Marshall, K. C., R. Stout, and R. Mitchell. 1971. ‘Mechanism of the initial events in the sorption of marine bacteria to surfaces’. J. Gen. Microbiol. 68: 337–348.

    Google Scholar 

  • Matthess, G., and A. Pekdeger. 1981. ‘Concepts of a survival and transport model of pathogenic bacteria and viruses in groundwater’. Sci. Total Environ. 21: 149–159.

    Article  Google Scholar 

  • McCarty, P.L., B.E. Rittmann, and E.J. Bouwer. 1984. ‘Microbiological processes affecting chemical transformations in groundwater’. p. 89–115. In G. Bitton and C. P. Gerba (ed.) Groundwater pollution microbiology. Wiley-Interscience, New York.

    Google Scholar 

  • McCaulou, D.R., R.C. Bales and J.F. McCarthy. 1994. ‘Use of short-pulse experiments to study bacteria transport through porous media’. J. Contam. Hydrol. 15: 1–14.

    Article  Google Scholar 

  • McDowell-Boyer, L. M., J. R. Hunt, and N. Sitar. 1986. ‘Particle transport in porous media’. Water Resour. Res. 22: 1901–1921.

    Article  Google Scholar 

  • Molz, F.J., M.A. Widdowson, and L.D. Benefield. 1986. ‘Simulation of microbial growth dynamics coupled to nutrient and oxygen transport in porous media’. Water Resour. Res. 22: 1207–1216.

    Article  Google Scholar 

  • Monod, J. 1942. Recherches sur la Croissance des Cultures Bacteriennes. Hermann et Cie, Paris.

    Google Scholar 

  • Moore, B.E., B.P. Sagik, and J.F. Malina. 1975. ‘Viral association with suspended solids’. Water Res. 9: 197–203.

    Article  Google Scholar 

  • Moore, R.S., D.H. Taylor, L.S. Sturman, M.M. Reddy, and G.W. Fuhs. 1981. ‘Poliovirus adsorption by 34 minerals and soils’. Appl. Environ. Microbiol. 42: 963–975.

    Google Scholar 

  • Moser, A. (1958). The Dynamics of Bacterial Populations Maintained in The Chemostat. Ph.D. thesis, The Carnegie Institute, Washington DC.

    Google Scholar 

  • Moser, A. 1985. ‘Kinetics of batch fermentations’. p. 243–283. In H.-J. Rehm and G. Reed (ed.) Biotechnology (Vol. 2). VCH Verlagsgesellschaft mbH, Weinheim.

    Google Scholar 

  • O’Melia, C. R., and W. Stumn. 1967. ‘Theory of water filtration’. J. Am. Water Works Assoc. 59: 1393–1412.

    Google Scholar 

  • Parke, J. L., R. Moen, A. D. Rovira, and G. D. Bowen. 1986. ‘Soil water flow affects the rhizosphere distribution of a seed-borne biological control agent, Pseudomonas fluorescens’. Soil Biol. Biochem. 18: 583–588.

    Article  Google Scholar 

  • Peele, T. C. 1936. Adsorption of bacteria by soils. Cornell Agric. Exp. Stn. Memoir. 197: 3–18.

    Google Scholar 

  • Peterson, T.C., and R.C. Ward. 1989. ‘Development of a bacterial transport model for coarse soils’. Water Resour. Bulletin. 25: 349–357.

    Article  Google Scholar 

  • Plummer, D.T., A.M. James., H. Gooder, and W.R. Maxted. 1962. ‘Some physical investigations of the behaviour of bacterial surfaces: 5. The variation of the surface structure of Streptococcus pyogenes during growth’. Biochim. Biophys. Acta. 60: 595–603.

    Article  Google Scholar 

  • Powelson, D. K., J. R. Simpson, and C. P. Gerba. 1990. ‘Virus transport and survival in saturated and unsaturated flow through soil columns’. J. Environ. Qual. 19: 396–401.

    Article  Google Scholar 

  • Rajagopalan, R. and R. Q. Chu. 1982. ‘Dynamics of adsorption of colloidal particles in packed beds’. J. Colloidal and Interface Sci. 86: 299–317.

    Article  Google Scholar 

  • Reynolds, P. J., P. Sharma, G. E. Jenneman, and M. J. McInerney. 1989. ‘Mechanisms of microbial movement in subsurface materials’. Appl. Environ. Microbiol. 55: 2280–2286.

    Google Scholar 

  • Rittmann, B. E. 1982. ‘The effect of shear stress on biofilm loss rate’. Biotechnol. Bioeng. 24: 501–506.

    Google Scholar 

  • Rittmann, B. E., P. L. McCarty, and P. V. Roberts. 1980. ‘Trace-organics biodegradation in aquifer recharge’. Ground Water. 18: 236–243.

    Article  Google Scholar 

  • Roels, J. A. 1983. Energetics and Kinetics in Biotechnology. Elsevier Biomedical Press, Amsterdam.

    Google Scholar 

  • Sakthivadivel, R. and H. A. Einstein. 1970. ‘Clogging of porous column of spheres by sediment’. J. Hydraul. Div. Proc. Am. Soc. Civ. Eng. HY 2: 461–471.

    Google Scholar 

  • Schaub, S. A., and B. P. Sagik. 1975. ‘Association of enteroviruses with natural and artificially introduced colloidal solids in water and infectivity of solids-associated virions’. Appl. Microbiol. 30: 212–222.

    Google Scholar 

  • Shehata, T. E., and A. G. Marr. 1971. ‘Effect of nutrient concentration on the growth of Escherichia coli’. J. Bacteriol. 107: 210–216.

    Google Scholar 

  • Sherard, J. L., L. P. Dunnigan, and J. R. Talbot. 1984. ‘Basic properties of sand and gravel filters’. J. Geotech. Eng. 110: 684–700.

    Article  Google Scholar 

  • Smith, M. S., G. W. Thomas, R. E. White, and D. Ritonga. 1985. ‘Transport of Escherichia coli through intact and disturbed soil columns’. J. Environ. Qual. 14: 87–91.

    Article  Google Scholar 

  • Speitel, G. E., and F. A. DiGiano. 1987. ‘Biofilm shearing under dynamic conditions’. J. Environ. Eng., Am. Soc.Civ. Eng. 113: 464–475.

    Google Scholar 

  • Sykes, J.F., S. Soyupak, and G.J. Farquhar. 1982. ‘Modeling of leachate organic migration and attenuation in groundwaters below sanitary landfills’. Water Resour. Res. 18: 135–145.

    Article  Google Scholar 

  • Tan, Y., W. J. Bond, A. D. Rovira, P. G. Brisbane, and D. M. Griffin. 1991. ‘Movement through soil of a biological control agent, Pseudomonas fluorescens’. Soil Biol. Biochem. 23: 821–825.

    Google Scholar 

  • Tan, Y., W. J. Bond, and D. M. Griffin. 1992. ‘Transport of bacteria during unsteady unsaturated soil water flow’. Soil Sci. Soc. Am. J. 56: 1331–1340.

    Article  Google Scholar 

  • Tan, Y., Z. X. Wang, R. P. Schuneider, and K. C. Marshall. 1994a. ‘Modeling bacterial growth kinetics: A statistical thermodynamic approach’. J. Biotechnol. 34: 97–106.

    Article  Google Scholar 

  • Tan, Y., J.G. Gannon, P. Baveye, and M. Alexander. 1994b. ‘Transport of bacteria in a saturated aquifer sand’. Water Resour. Res. 30: 3243–3252.

    Article  Google Scholar 

  • Taylor, S. W., and P. R. Jaffe. 1990a. ‘Biofilm growth and the related changes in the physical properties of a porous medium. 1. Experimental investigation’. Water Resour. Res. 26: 2153–2159.

    Google Scholar 

  • Taylor, S. W., and R R. Jaffe. 1990b. ‘Biofilm growth and the related changes in the physical properties of a porous medium. 3. Dispersivity and model verification’. Water Resour. Res. 26: 2171–2180.

    Article  Google Scholar 

  • Taylor, S. W., and P. R. Jaffe. 1990c. ‘Substrate and biomass transport in a porous medium’. Water Resour. Res. 26: 2181–2194.

    Article  Google Scholar 

  • Udoyara, S.T. and S. Mostaghimi. 1991. ‘Model for predicting virus movement through soils’. Ground Water. 29: 251–259.

    Article  Google Scholar 

  • Vilker, V. L. 1980. ‘Simulating virus movement in soils’. p. 223–253. In I. K. Iskandar (ed.) Modeling wastewater renovation: Land treatment. Wiley-Interscience, New York.

    Google Scholar 

  • Vilker, V. L., and W. D. Burge. 1980. ‘Adsorption mass transfer model for virus transport in soils’. Water Res. 14: 783–790.

    Article  Google Scholar 

  • Vinten, J. A., and R H. Nye. 1985. ‘Transport and deposition of dilute colloidal suspensions in soils’. J. Soil Sci. 36: 531–541.

    Article  Google Scholar 

  • Watson, J. E., and W. R. Gardner. 1986. ‘A mechanistic model of bacterial colony growth response to substrate supply’. Paper presented at the Chapman Conference on Microbial Processes in the Transport, Fate and in situ Treatment of Subsurface Contaminants. Snowbird, Utah. Oct., 1986.

    Google Scholar 

  • White, R. E., J. S. Dyson, R. A. Haigh, W. A. Jury, and G. Sposito. 1986. ‘A transfer function model of solute transport through soil: 2. Illustrative applications’. Water Resour. Res. 22: 248–254.

    Article  Google Scholar 

  • Wollum, A. G., and D. K. Cassel. 1978. ‘Transport of microorganisms in sand columns’. Soil Sci. Soc. Am. J. 42: 72–76.

    Article  Google Scholar 

  • Yates, M. V., and Y. Ouyang. 1992. ‘VIRTUS, a model of virus transport in unsaturated soils’. Appl. Environ. Microbiol. 58: 1069–1616.

    Google Scholar 

  • Yates, M. V., and S. R. Yates. 1988. ‘Modeling microbial fate in the subsurface environment’. CRC Crit. Rev. Environ. Control. 17: 307–344.

    Article  Google Scholar 

  • Yao, K., M. T. Habibian, and C. R. O’ Melia. 1971. ‘Water and wastewater filtration: Concepts and applications’. Environ. Sci. Technol. 5: 1105–1112.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tan, Y., Bond, W.J. (1995). Modeling subsurface transport of microorganisms. In: Singh, V.P. (eds) Environmental Hydrology. Water Science and Technology Library, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1439-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1439-6_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4573-7

  • Online ISBN: 978-94-017-1439-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics