Skip to main content

Insect resistance to Bacillus thuringiensis insecticidal crystal proteins

  • Chapter
Entomopathogenic Bacteria: from Laboratory to Field Application

Abstract

Several insect species have developed resistance to insecticidal crystal proteins from Bacillus thuringiensis, either through laboratory selection, or under field conditions. In this chapter we review the current knowledge on the biochemical and genetic mechanisms of resistance to B. thuringiensis. This knowledge will be important in the design of appropriate tactics to manage the development of resistance in insect populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andow DA and Alstad DN (1998) F2 screening for rare resistance alleles. J. Econ. Entomol. 91, 572–578.

    Google Scholar 

  2. Andow DA and Alstad DN, Pang YH, Bolin PC and Hutchison WD (1998) Using an F2 screen to search for resistance alleles to Bacillus thuringiensis toxin in European corn borer (Lepidoptera: Crambidae). J. Econ. Entomol. 91, 579–584.

    Google Scholar 

  3. Ballester V, Escriche B, Ménsua JL, Riethmacher GW and Ferré J (1994) Lack of cross-resistance to other Bacillus thuringiensis crystal proteins in a population of Plutella xylostella highly resistant to CrylAb. Biocontrol Sci. Technol. 4, 437–443.

    Google Scholar 

  4. Ballester V, Granero F, Tabashnik BE, Malvar T and Ferré J (1999) Integrative model for binding of Bacillus thuringiensis toxins in susceptible and resistant larvae of the diamondback moth (Plutella xylostella). Appl. Environ. Microbiol. 65; 1413–1419.

    PubMed  CAS  Google Scholar 

  5. Bauer LS (1995) Resistance: a threat to the insecticidal crystal proteins of Bacillus thuringiensis. Florida Entomol. 78, 414–443.

    Article  CAS  Google Scholar 

  6. Bravo A, Jansens S and Peferoen M (1992) Immunocytochemical localization of Bacillus thuringiensis insecticidal crystal proteins in intoxicated insects. J. Invertebr. Pathol. 60, 237–246.

    Article  CAS  Google Scholar 

  7. Chaufaux J, Müller-Cohn J, Buisson C, Sanchis V, Lereclus D and Pasteur N (1997) Inheritance of resistance to the Bacillus thuringiensis CryIC toxin in Spodoptera littoralis (Lepidoptera: Noctuidae). J. Econ. Entomol. 90, 873–878.

    Google Scholar 

  8. Escriche B, Tabashnik B, Finson N and Ferré J (1995) Imunohistochemical detection of binding of CryIA crystal proteins of Bacillus thuringiensis in highly resistant strains of Plutella xylostella (L.) from Hawaii. Biochem. Biophys. Res. Commun. 212, 388–395.

    Article  PubMed  CAS  Google Scholar 

  9. Estada U and Ferré J (1994) Binding of insecticidal crystal proteins of Bacillus thuringiensis to the midgut brush border of the cabbage looper, Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae), and selection for resistance to one of the crystal proteins. Appl. Environ. Microbiol. 60, 3840–3846.

    PubMed  CAS  Google Scholar 

  10. Falconer DS (1989) Introduction to Quantitative Genetics. New York: Longman.

    Google Scholar 

  11. Ferré J, Escriche B, Bel Yand Van Rie J. (1995) Biochemistry and genetics of insect resistance to Bacillus thuringiensis insecticidal crystal proteins. FEMS Microbiol. Lett. 132, 1–7.

    Google Scholar 

  12. Ferré J, Real MD, Van Rie J, Jansens S, Peferoen M (1991) Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. USA. 88, 5119–5123.

    Article  PubMed  Google Scholar 

  13. Georghiou GP Lagunes-Tejeda A (1991) The occurrence of resistance to pesticides in Arthropods. Food and Agriculture Organization of the United Nations, Rome.

    Google Scholar 

  14. Gould F (1998) Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu. Rev. Entomol. 43, 701–726.

    Article  PubMed  CAS  Google Scholar 

  15. Gould F, Anderson A, Jones A et al. (1997) Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in filed populations of Heliothis virescens. Proc. Natl. Acad. Sci. USA 94, 3519–3523.

    Article  PubMed  CAS  Google Scholar 

  16. Gould F, Anderson A, Reynolds A, Bumgarner L and Moar W (1995) Selection and genetic analysis of a Heliothis virescens (Lepidoptera: Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins. J. Econ. Entomol. 88, 1545–1559.

    CAS  Google Scholar 

  17. Gould F, Martinez-Ramirez A, Anderson A, Ferré J, Silva FJ, Moar WJ (1992) Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proc. Natl. Acad. Sci. USA 89, 7986–7990.

    Article  PubMed  CAS  Google Scholar 

  18. Groeters FR, Tabashnik BE, Finson N and Johnson MW (1994) Fitness costs of resistance to Bacillus thuringiensis in the diamondback moth (Plutella xylostella). Evolution 48, 197–201.

    Article  Google Scholar 

  19. Hama H, Suzuki K and Tanaka H (1992) Inheritance and stability of resistance to Bacillus thuringiensis formulations of the diamondback moth, Plutella xylostella (Linnaeus) (Lepidoptera: Yponomeutidae). Appl. Entomol. Zool. 27, 355–362.

    Google Scholar 

  20. Heckel DG, Gahan LC, Gould F and Anderson A (1997) Identification of a linkage group with a major effect on resistance to Bacillus thuringiensis CrylAc endotoxin in the tobacco budworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 90, 75–86.

    CAS  Google Scholar 

  21. Huang F, Higgins RA and Buschman LT (1997) Baseline susceptibility and changes in susceptibility to Bacillus thuringiensis subsp. kurstaki under selection pressure in European corn borer (Lepidoptera: Pyralidae). J. Econ. Entomol. 90, 1137–1143.

    Google Scholar 

  22. Johnson DE, Brookhart GL, Kramer FJ, Barnett BD and McGaughey WH (1990) Resistance to Bacillus thuringiensis by the Indian meal moth, Plodia interpunctella: comparison of midgut proteinases from susceptible and resistant larvae. J. Invertebr. Pathol. 55, 235–244.

    Article  PubMed  CAS  Google Scholar 

  23. Johnson DE and McGaughey WH (1996) Natural mortality among Indianmeal moth larvae with resistance to Bacillus thuringiensis. J. Invertebr. Pathol. 68, 170–172.

    Article  Google Scholar 

  24. Kinsinger RA, McGaughey WH (1979) Susceptibility of populations of Indianmeal moth and almond moth to Bacillus thuringiensis isolates (Lepidoptera: Pyralidae). J. Econ. Entomol. 72, 346–349.

    Google Scholar 

  25. Lee MK, Rajamohan F, Gould F, Dean DH (1995) Resistance to Bacillus thuringiensis CryIA S-endotoxins in a laboratory-selected Heliothis virescens strain is related to receptor alteration. Appl. Environ. Microbiol. 61, 3836–3842.

    PubMed  CAS  Google Scholar 

  26. Liu YB and Tabashnik BE (1997) Inheritance of resistance to the Bacillus thuringiensis toxin Cry1C in the diamondback moth. Appl. Environ. Microbiol. 63, 2218–2223.

    PubMed  CAS  Google Scholar 

  27. Liu YB, Tabashnik BE and Pusztai-Carey M (1996) Field-evolved resistance to Bacillus thuringiensis toxin CryIC in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 89, 798–804.

    CAS  Google Scholar 

  28. Luo K, Banks D and Adang MJ (1999) Toxicity, binding, and permeability analyses of four Bacillus thuringiensis Cryl _-endotoxins using brush border membrane vesicles of Spodoptera exigua and Spodoptera frugiperda. Appl. Environ. Microbiol. 65, 457–464.

    PubMed  CAS  Google Scholar 

  29. Luo K, Tabashnik BE and Adang MJ (1997) Binding of Bacillus thuringiensis Cry lAc toxin to aminopeptidase in susceptible and resistant diamondback moths (Plutella xylostella). Appl. Environ. Microbiol. 63, 1024–1027.

    PubMed  CAS  Google Scholar 

  30. MacIntosh SC, Stone TB, Jokerst RS and Fuchs RL (1991) Binding of Bacillus thuringiensis proteins to a laboratory-selected line of Heliothis virescens. Proc. Natl. Acad. Sci. USA 88, 8930–8933.

    Article  PubMed  CAS  Google Scholar 

  31. Martinez-Ramirez AC, Escriche B, Real MD, Silva FJ and Ferré J (1995) Inheritance of resistance to a Bacillus thuringiensis toxin in a field population of diamondback moth (Plutella xylostella). Pestic. Sci. 43, 115–120.

    Article  CAS  Google Scholar 

  32. Masson L, Mazza A, Brousseau R and Tabashnik B (1995) Kinetics of Bacillus thuringiensis toxin binding with brush border membrane vesicles from susceptible and resistant larvae of Plutella xylostella. J. Biol. Chem. 270, 11887–11896.

    Article  PubMed  CAS  Google Scholar 

  33. McGaughey WH (1985) Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229, 193–195.

    Article  PubMed  CAS  Google Scholar 

  34. McGaughey WH and Beeman RW (1988) Resistance to Bacillus thuringiensis in colonies of Indianmeal moth and almond moth (Lepidoptera: Pyralidae). J. Econ. Entomol. 81, 28–33.

    Google Scholar 

  35. McGaughey WH and Johnson DE (1992) Indianmeal moth (Lepidoptera: Pyralidae) resistance to different strains and mixtures of Bacillus thuringiensis. J. Econ. Entomol. 85, 1594–1600.

    Google Scholar 

  36. Moar WJ, Pusztai-Carey M, van Faassen H et al (1995) Development of Bacillus thuringiensis CryIC resistance by Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). Appl. Environ. Microbiol. 61, 2086–2092.

    PubMed  CAS  Google Scholar 

  37. Mohammed SI, Johnson DE and Aronson AI (1996) Altered binding of the CrylAc toxin to larval membranes but not to the toxin-binding protein in Plodia interpunctella selected for resistance to different Bacillus thuringiensis isolates. Appl. Environ. Entomol. 62, 4168–4173.

    CAS  Google Scholar 

  38. Mtiller-Cohn J, Chaufaux J, Buisson C, Gilois N, Sanchis V and Lereclus D (1996) Spodoptera littoralis (Lepidoptera: Noctuidae) resistance to CryIC and cross-resistance to other Bacillus thuringiensis crystal toxins. J. Econ. Entomol. 89, 791–797.

    Google Scholar 

  39. Oppert B, Kramer KJ, Beeman RW, Johnson D and McGaughey WH (1997) Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J. Biol. Chem. 272, 23473–23476.

    Article  PubMed  CAS  Google Scholar 

  40. Oppert B, Kramer KJ, Johnson D, Upton S and McGaughey WH (1996) Luminal proteinases from Plodia interpunctella and the hydrolysis of Bacillus thuringiensis CryIA(c) protoxin. Insect Biochem. Molec. Biol. 26, 571–583.

    CAS  Google Scholar 

  41. Rahardja U and Whalon ME (1995) Inheritance of resistance to Bacillus thuringiensis subsp. tenebrionis CryIIIA d-endotoxin in Colorado potato beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol. 88, 21–26.

    PubMed  CAS  Google Scholar 

  42. Rossiter M, Yendol WG and Dubois NR (1990) Resistance to Bacillus thuringiensis in gypsy moth (Lepidoptera: Lymantriidae): genetic and environmental causes. J. Econ. Entomol. 83, 2211–2218.

    Google Scholar 

  43. Schnepf E, Crickmore N, Van Rie J, et al. (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 775–806.

    Google Scholar 

  44. Sims SR and Stone TB (1991) Genetic basis of tobacco budworm resistance to an engineered Pseudomonas fluorescens expressing the S-endotoxin of Bacillus thuringiensis kurstaki. J. Invertebr. Pathol. 57, 206–210.

    Article  Google Scholar 

  45. Stone TB, Sims SR and Marrone PG (1989) Selection of tobacco buworm for resistance to a genetically engineered Pseudomonas fluorescens containing the _-endotoxin of Bacillus thuringiensis subsp. kurstaki. J. Invertebr. Pathol. 53, 228–234.

    Article  Google Scholar 

  46. Tabashnik BE (1994) Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 39, 47–79.

    Article  Google Scholar 

  47. Tabashnik BE, Finson N, Groeters F et al (1994) Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. Proc. Natl Acad. Sci. 91, 4120–4124.

    CAS  Google Scholar 

  48. Tabashnik BE, Finson N and Johnson MW (1991) Managing resistance to Bacillus thuringiensis: lessons from the diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 84, 49–55.

    Google Scholar 

  49. Tabashnik BE, Finson N, Johnson MW and Heckel D (1995) Prolonged selection affects stability of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 88, 219–224.

    Google Scholar 

  50. Tabashnik BE, Groeters FR, Finson N and Johnson MW (1994) Instability of resistance to Bacillus thuringiensis. Biocontrol Sci. Technol. 4, 419–426.

    Google Scholar 

  51. Tabashnik BE, Malvar T, Liu Y-B et al (1996) Cross-resistance of diamondback moth indicates altered interactions with domain II of Bacillus thuringiensis toxins. Appl. Environ. Microbiol. 62, 2839–2844.

    PubMed  CAS  Google Scholar 

  52. Tabashnik BE, Liu YB, Finson N, Masson L and Heckel DG (1997) One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins. Proc. Natl. Acad. Sci. USA 94, 1640–1644.

    Article  PubMed  CAS  Google Scholar 

  53. Tabashnik BE, Liu YB, Malvar T, et al (1997) Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 94, 12780–12785.

    Article  PubMed  CAS  Google Scholar 

  54. Tabashnik BE, Liu YB, Malvar T, Heckel DG, Masson L and Ferré J (1998) Insect resistance to Bacillus thuringiensis: uniform or diverse ? Phil. Trans. R. Soc. Lond. B 353, 1751–1756.

    Article  Google Scholar 

  55. Tabashnik BE, Schwartz JM, Finson N and Johnson MW (1992) Inheritance of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 85, 1046–1055.

    Google Scholar 

  56. Tang JD, Gilboa S, Roush, RT and Shelton AM (1997) Inheritance, stability, and lackof-fitness costs of field-selected resistance to Bacillus thuringiensis in diamondback moth (Lepdoptera: Plutellidae) from Florida. J. Econ. Entomol. 90, 732–741.

    Google Scholar 

  57. Tang JD, Shelton AM, Van Rie J, et al (1996) Toxicity of Bacillus thuringiensis spore and crystal protein to resistant diamondback moth (Plutella xylostella). Appl. Environ. Microbiol. 62, 564–569.

    PubMed  CAS  Google Scholar 

  58. van Frankenhuyzen K, Nystrom CW and Tabashnik BE (1995) Variation in tolerance to Bacillus thuringiensis among and within populations of the spruce budworm (Lepidoptera: Tortricidae) in Ontario. J. Econ. Entomol. 88, 97–105.

    PubMed  Google Scholar 

  59. Van Rie J, Jansens S, Höfte H, Degheele D and Van Mellaert H (1989) Specificity of Bacillus thuringiensis 8-endotoxins–Importance of specific receptors on the brush border membranes of the mid-gut of target insects. Eur. J. Biochem. 186, 239–247.

    Article  PubMed  Google Scholar 

  60. Van Rie J, McGaughey WH, Johnson DE, Barnett BD and Van Mellaert H (1990) Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science 247, 72–74.

    Article  PubMed  Google Scholar 

  61. Whalon ME, Miller DL, Hollingworth RM, Grafius EJ and Miller JR (1993) Selection of a Colorado potato beetle (Coleoptera: Chrysomelidae) strain resistant to Bacillus thuringiensis. J. Econ. Entomol. 86, 1516–1521.

    Google Scholar 

  62. Wirth MC and Georghiou GP (1997) Cross-resistance among CryIV toxins of Bacillus thuringiensis subsp. israelensis in Culex quinquefasciatus (Diptera: Culicidae). J. Econ. Entomol. 90, 1471–1477.

    CAS  Google Scholar 

  63. Wright DJ, Iqbal M, Granero F and Ferré J (1997) A change in a single midgut receptor in the diamondback moth (Plutella xylostella) is only in part responsible for field resistance to Bacillus thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai. Appl. Environ. Microbiol. 63, 1814–1819.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Van Rie, J., Ferré, J. (2000). Insect resistance to Bacillus thuringiensis insecticidal crystal proteins. In: Charles, JF., Delécluse, A., Roux, C.NL. (eds) Entomopathogenic Bacteria: from Laboratory to Field Application. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1429-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1429-7_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5542-2

  • Online ISBN: 978-94-017-1429-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics