Skip to main content

Phylogenetic systematics and biomechanics in ecomorphology

  • Chapter
Ecomorphology of fishes

Part of the book series: Developments in environmental biology of fishes ((DEBF,volume 16))

Synopsis

Research in all fields of biology increasingly uses phylogenetic systematics to interpret biological data in an evolutionary context. It is becoming widely accepted that comparative studies of the correlation of biological features, such as ecomorphological studies, must frame their analyses within the context of a phylogenetic hierarchy rather than treating each taxonomic unit as an independent replicate. Recent methods for the interpretation of ecological and functional data in the framework of a phylogeny can reveal the degree to which ecomorphological characters are correlated with one another, and are congruent with hierarchical cladistic groups. An example of the ecomorphology of labrid fishes is used here to illustrate the application of several of these methods. The structural design and mechanics of the jaws of labrids are tested for ecomorphological associations with the natural diets of these fishes. Methods for analysis of the correlated evolution of both discrete and continuous quantitative characters within a phylogeny are practiced on a single ecomorphological data set. Techniques used include character coding, character mapping, phylogenetic autocorrelation, independent contrasts, and squared change parsimony. These approaches to diverse biological data allow the study of ecomorphology to account for patterns of phylogenetic ancestry. Biomechanics or functional morphology also plays a vital role in the determination of ecomorphological relationships by clarifying the mechanisms by which morphologies can perform behaviors important to the organism’s ecology. The synthesis of systematics with biomechanics is an example of interdisciplinary study in which information exchange can elucidate patterns of evolution in ecomorphology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  • Anker, G.Ch. 1974. Morphology and kinetics of the stickleback, Gasterosteus aculeatus. Trans. Zool. Soc. ( Lond. ) 32: 311–416.

    Google Scholar 

  • Archie, J.W. 1985. Methods for coding variable morphological features for numerical taxonomic analysis. Syst. Zool. 34: 326–345.

    Google Scholar 

  • Block, B.A., J.R. Finnerty, A.F.R. Stewart & J.A. Kidd. 1993. Evolution of endothermy in fish: mapping physiological traits on a molecular phylogeny. Science 260: 210–213.

    Article  PubMed  CAS  Google Scholar 

  • Burt, A. 1989. Comparative methods using phylogenetically in-dependent contrasts. Oxford Surveys in Evolutionary Biology 6: 33–53.

    Google Scholar 

  • Cheverud, J.M. & M.M. Dow. 1985. An autocorrelation analysis of genetic variation due to lineal fission in social groups of rhesus macaques. Amer. J. Phys. Anthrop. 67: 113–121.

    Google Scholar 

  • Cheverud, J.M., M.M. Dow & W. Leutennegger. 1985. The quantitative assessment of phylogenetic constraints in comparative analyses: sexual dimorphism in body weight among primates. Evolution 39: 1335–1351.

    Article  Google Scholar 

  • Cracraft, J. 1981. The use of functional and adaptive criteria in phylogenetic systematics. Amer. Zool. 21: 21–36.

    Google Scholar 

  • Clutton-Brock, T.H. & P.H. Harvey. 1977. Primate ecology and social organization. J. Zool. Lond. 183: 1–33.

    Google Scholar 

  • Donoghue, M.J. 1989. Phylogenies and the analysis of evolutionary sequences, with examples from seed plants. Evolution 43: 1137–1156.

    Article  Google Scholar 

  • Farris, S.J. 1970. Methods for computing Wagner trees. Syst. Zool. 19: 83–92.

    Google Scholar 

  • Felley, J.D. 1984. Multivariate identification of morphological-environmental relationships within the Cyprinidae ( Pisces ). Copeia 1984: 442–455.

    Google Scholar 

  • Felsenstein, J. 1985. Phylogenies and the comparative method. Amer. Nat. 125: 1–15.

    Google Scholar 

  • Felsenstein, J. 1988. Phylogenies and quantitative methods. Ann. Rev. Ecol. Syst. 19: 445–471.

    Google Scholar 

  • Garland, T. Jr., P. Harvey & A.R. Ives. 1992. Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst. Biol. 41: 18–32.

    Google Scholar 

  • Gatz, A.J. Jr. 1979. Community organization in fishes as indicated by morphological features. Ecology 60: 711–718. Gittelman, J.L. & M. Kot. 1991. Adaptation: statistics and a null model for estimating phylogenetic effects. Syst. Zool. 39: 227241.

    Google Scholar 

  • Goldman, N. 1989. Fewest variables coding method for multistate characters. Syst. Zool. 38: 79–85.

    Google Scholar 

  • Gomon, M.F. 1979. A revision of the genus Bodianus (family Labridae) with a phylogenetic hypothesis of related genera in tribe Hysigenyini. Ph.D. Dissertation, University of Miami, Miami. 294 pp.

    Google Scholar 

  • Grafen, A. 1989. The phylogenetic regression. Phil. Trans. Royal. Soc. Lond. 326: 119–156.

    Google Scholar 

  • Harvey, P.H. & M.D. Pagel. 1991. The comparative method in evolutionary biology. Oxford University Press, Oxford. 239 pp.

    Google Scholar 

  • Hennig, W. 1966. Phylogenetic systematics. University of Illinois Press, Urbana. 263 pp.

    Google Scholar 

  • Hillis, D.M. & C. Moritz. 1990. Molecular systematics. Sinauer associates, Sunderland. 588 pp.

    Google Scholar 

  • Huey, R.B. & A.F. Bennett. 1987. Phylogenetic studies of co-adaptation: preferred temperatures versus optimal performance temperatures of lizards. Evolution 41: 1098–1115.

    Article  Google Scholar 

  • Keast, A. & D. Webb. 1966. Mouth and body form relative to feeding ecology in the fish fauna of a small lake, Lake Opinicon, Ontario. J. Fish. Res. Board Can. 23: 1845–1874.

    Google Scholar 

  • Kotrschal, K. 1989. Trophic ecomorphology in eastern Pacific blennioid fishes: character transformation of oral jaws and as-sociated change in their biological role. Env. Biol. Fish. 24: 199–218.

    Google Scholar 

  • Lauder, G.V. 1982. Patterns of evolution in the feeding mechanism of acanthopterygian fishes. Amer. Zool. 22: 275–285.

    Google Scholar 

  • Lauder, G.V. 1983. Functional design and the evolution of the pharyngeal jaw apparatus in euteleostean fishes. Zool. J. Linn. Soc. 77: 1–38.

    Google Scholar 

  • Lauder, G.V. 1990. Functional morphology and systematics: studying functional patterns in an historical context. Ann. Rev. Ecol. Syst. 21: 317–340.

    Google Scholar 

  • Lauder, G.V. 1991. Biomechanics and evolution: integrating physical and historical biology in the study of complex systems. pp. 1–19. In: J.M.V. Raynor & R.J. Wooton (eds) Bio-mechanics in Evolution, Cambridge University Press, Cambridge.

    Google Scholar 

  • Liem, K.F.1987. Functional design of the air ventilation apparatus and overland excursion by teleosts. Fieldiana Zool. 1379: 1–29.

    Google Scholar 

  • Liem, K.F. & P.H. Greenwood. 1981. A functional approach to the phylogeny of the pharyngognath teleosts. Amer. Zool. 21: 83–101.

    Google Scholar 

  • Losos, J.B. 1990. Ecomorphology, performance capability, and scaling of West Indian Anolis lizards: an evolutionary analysis. Ecol. Monog. 60: 369–388.

    Google Scholar 

  • Maddison, W.P. 1990. A method for testing the correlated evolution of two binary characters: are gains and losses concentrated on certain branches of a phylogenetic tree? Evolution 44: 539–557.

    Article  Google Scholar 

  • Maddison, W.P. 1991. Squared-change parsimony reconstructions of ancestral states for continuous valued characters on a phylogenetic tree. Syst. Zool. 40: 404–314.

    Google Scholar 

  • Maddison, W.P. & D.R. Maddison. 1992. MacClade: analysis of phylogeny and character evolution. Version 3. 0. Sinauer Associates, Sunderland.

    Google Scholar 

  • Martins, E.P. & T. Garland Jr. 1991. Phylogenetic analysis of the correlated evolution of continuous traits: a simulation study. Evolution 45: 534–557.

    Article  Google Scholar 

  • McLennan, D.A., D.R. Brooks & J.D. McPhail. 1988. The benefits of communication between comparative ethology and phylogenetic systematics: a case study using gasterosteid fishes. Can. J. Zool. 66: 2177–2190.

    Google Scholar 

  • Michevich, M.F. & M.F. Johnson. 1976. Congruence between morphological and allozymc data in evolutionary inference and character evolution. Syst. Zool. 24: 260–270.

    Google Scholar 

  • Michevich, M.F. & S.J. Weller. 1990. Evolutionary character analysis: tracing character change on a cladogram. Cladistics 6: 137–170.

    Article  Google Scholar 

  • Norton, S.F. 1991. Capture success and diet of cottid fishes: the role of predator morphology and attack kinematics. Ecology 72: 1807–1819.

    Article  Google Scholar 

  • OLLa, B.L., A.J. Bejda & A.D. Martin. 1974. Daily activity, movements, feeding, and seasonal occurrences in the tautog, Tautoga onitis. U.S. Natl. Mar. Fish. Serv. Bull. 72: 27–35.

    Google Scholar 

  • Pagel, M.D. & P.H. Harvey. 1989. Comparative methods for examining adaptation depend on evolutionary models. Folia. Primat. 53: 203–230.

    Google Scholar 

  • Randall, J.E. 1978. Food habits of the giant humphead wrasse, Cheilinus undulatus (Labridae). Env. Biol. Fish. 3: 235–238.

    Google Scholar 

  • Ridley, M. 1983. The explanation of organic diversity: the comparative method and adaptations for mating. Oxford University Press, Oxford. 272 pp.

    Google Scholar 

  • Schaefer, S.A. & G.V. Lauder. 1986. Historical transformation of functional design: evolutionary morphology of feeding mechanisms in loricarioid catfishes. Syst. Zool. 35: 489–509.

    Google Scholar 

  • Schwenk, K. & G.S. Throckmorton. 1989. Functional and evolutionary morphology of lingual feeding in squamate reptiles: phylogenetics and kinematics. J. Zool. Lond. 219: 153–175.

    Google Scholar 

  • Simon, C.M. 1983. A new coding procedure for morphometric data with an example from periodical cicada wings. pp. 378382. In: J. Felsenstein (ed.) Numerical Taxonomy, Proceedings of the NATO Advanced Study Institute, Ser. G (Ecol. Sci.) 1, Springer-Verlag, New York.

    Google Scholar 

  • Stearns, S.C. 1983. The influence of size and phylogeny on patterns of covariation among life history traits in mammals. Oikos 41: 173–187.

    Article  Google Scholar 

  • Swofford, D.L. 1992. PAUP: phylogenetic analysis using parsimony. Version 3. 0s, Illinois Natural History Survey, Champaign.

    Google Scholar 

  • Swofford, D.L. & W.P. Maddison. 1987. Reconstructing ancestral states under Wagner parsimony. Mathem. Biosci. 87: 199–229.

    Google Scholar 

  • Thorpe, R.S. 1984. Coding morphometric characters for constructing Wagner distance networks. Evolution 38: 244–255.

    Article  Google Scholar 

  • Wainwright, P.C. 1987. Biomechanical limits to ecological performance: mollusc-crushing in the Caribbean hogfish, Lachnolaimus maximus (Labridae). J. Zool. Lond. 213: 283–297.

    Google Scholar 

  • Wainwright, P.C. 1988. Morphology and ecology: functional basis of feeding constraints in Caribbean labrid fishes. Ecology 69: 635–645.

    Article  Google Scholar 

  • Wainwright, P.C. 1991. Ecomorphology: experimental functional anatomy for ecological problems. Amer. Zool. 31: 680–693.

    Google Scholar 

  • Wainwright, P.C. & G.V. Lauder. 1990. The evolution of feeding biology in sunfishes (Centrarchidae). pp. 472–491. In:R.W. Mayden (ed.) Systematics, Historical Ecology, and North American Freshwater Fishes, Stanford University Press, Stanford.

    Google Scholar 

  • Westneat, M.W. 1990. Feeding mechanics of teleost fishes (Labridae: Perciformes): a test of four-bar linkage models. J. Morph. 205: 269–295.

    Article  Google Scholar 

  • Westneat, M.W. 1991. Linkage biomechanics and evolution of the jaw protrusion mechanism of the sling-jaw wrasse, Epibulus insidiator. J. Exp. Biol. 159: 165–184.

    Google Scholar 

  • Westneat, M.W. 1993. A phylogenetic hypothesis for the tribe Cheilinini ( Labridae: Perciformes). Bull. Mar. Sci. 52: 351–394.

    Google Scholar 

  • Westneat, M.W. 1994. Transmission of force and velocity in the feeding mechanisms of labrid fishes. Zoomorphology 114: 103–118.

    Article  Google Scholar 

  • Westneat, M.W. & P.C. Wainwright. 1989. Feeding mechanism of the sling-jaw wrasse, Epibulus insidiator (Labridae; Teleostei): evolution of a novel functional system. J. Morph. 202: 129–150.

    Article  Google Scholar 

  • Wiley, E.O. 1981. Phylogenetics. The theory and practice of phylogenetic systematics. Wiley Press, New York. 439 pp.

    Google Scholar 

  • Wiley, E.O., D. Siegel-Causey, D.R. Brooks & V.A. Funk. 1991. The compleat cladist: a primer of phylogenetic procedures. University of Kansas Museum of Natural History Special Publication No. 19, Lawrence. 158 pp.

    Google Scholar 

  • Wilkinson, L. 1991. SYSTAT: the system for statistics. Version 5. 1, Systat Inc., Evanston.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joseph J. Luczkovich Philip J. Motta Stephen F. Norton Karel F. Liem

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Westneat, M.W. (1995). Phylogenetic systematics and biomechanics in ecomorphology. In: Luczkovich, J.J., Motta, P.J., Norton, S.F., Liem, K.F. (eds) Ecomorphology of fishes. Developments in environmental biology of fishes, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1356-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1356-6_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4620-8

  • Online ISBN: 978-94-017-1356-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics