Skip to main content

Abstract

Most plants combine sexual and clonal reproduction, and the balance between the two may vary widely between and within species. There are many anecdotal reports of plants that appear to have abandoned sex for clonal reproduction, yet few studies have quantified the degree of sexual variation in clonal plants and fewer still have determined the underlying ecological and/or genetic factors. Recent empirical work has shown that some clonal plants exhibit very wide variation in sexual reproduction that translates into striking variation in genotypic diversity and differentiation of natural populations. Reduced sexual reproduction may be particularly common at the geographical margins of species’ ranges. Although seed production and sexual recruitment may often be limited by biotic and abiotic aspects of the environment in marginal populations, genetic factors, including changes in ploidy and sterility mutations, may also play a significant role in causing reduced sexual fertility. Moreover, environmental suppression of sexual recruitment may facilitate the evolution of genetic sterility because natural selection no longer strongly maintains the many traits involved in sex. In addition to the accumulation of ‘neutral’ sterility mutations in highly clonal populations, the evolution of genetic infertility may be facilitated if sterility is associated with enhanced vegetative growth, clonal propagation or survival through either resource reallocation or pleiotropy. However, there are almost no experimental data with which to distinguish among these possibilities. Ultimately, wide variation in genotypic diversity and gene flow associated with the loss of sex may constrain local adaptation and the evolution of the geographical range limit in clonal plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamson, W.G. (1980) Demography and vegetative reproduction. In O.T. Solbrig (ed.) Demography and Evolution in Plant Populations. Blackwell, Oxford, UK, pp. 89–106.

    Google Scholar 

  • Ashton, P.J. and Mitchell, D.S. (1989) Aquatic plants: Patterns and modes of invasion, attributes of invading species and assessment of control programs. In J.A. Drake, H.A. Mooney, F. Di Castri, R.H. Groves, F.J. Kruger, M. Rejmânek and M.H. Williamson (eds) Biological Invasions: A Global Perspective. John Wiley and Sons Ltd., London, UK, pp. 111–154.

    Google Scholar 

  • Aspinwall, N. and Christian, T. (1992) Clonal structure, genotypic diversity, and seed production in populations of Filipendula rubra (Rosaceae) from the northcentral United States. Amer. J. Bot 79, 294–299.

    Article  Google Scholar 

  • Baker, H.G. (1965) Characteristics and modes of origins of weeds. In H.G. Baker and G.L. Stebbins (eds) The Genetics of Colonizing Species. Academic Press, New York, NY, USA, pp. 147–172.

    Google Scholar 

  • Barrett, S.C.H. (1980a) Sexual reproduction in Eichhornia crassipes (water hyacinth). II. Seed production in natural populations. J. Appl. Ecol 17, 113–124.

    Article  Google Scholar 

  • Barrett, S.C.H. (1980b) Sexual reproduction in Eichhornia crassipes (water hyacinth). I. Fertility of clones from diverse regions. J. Appl. Ecol 17, 101–112.

    Article  Google Scholar 

  • Barrett, S.C.H., Eckert, C.G. and Husband, B.C. (1993) Evolutionary processes in aquatic plants. Aquatic Bot. 44, 105–145.

    Article  Google Scholar 

  • Bhardwaj, M. and Eckert, C.G. (2001) Functional analysis of synchronous dichogamy in flowering rush, Butomus umbellatus (Butomaceae). Amer. J. Bot 88, 2204–2213.

    Google Scholar 

  • Bierzychudek, P. (1987) Patterns in plant parthenogenesis. In S.C. Stearns (ed.) The Evolution of Sex and its Consequences. Birkhäuser Verlag, Basel, Switzerland, pp. 197–217.

    Google Scholar 

  • Brace, C.L. (1963) Structural reduction in evolution. Amer. Nat 97, 39–49.

    Article  Google Scholar 

  • Byers, D.L. and Meagher, T.R. (1992) Mate availability in small populations of plant species with homomorphic sporophytic self-incompatibility. Heredity 68, 353–359.

    Article  Google Scholar 

  • Case, T.J. and Taper, M.L. (2000) Interspecific competition, environmental gradients, gene flow, and the coevolution of species’ borders. Amer. Nat 155, 583–605.

    Article  Google Scholar 

  • Caughley, G., Grice, D., Barker, R. and Brown, B. (1988) The edge of the range. J. Anim. Ecol 57, 771–785.

    Article  Google Scholar 

  • Charpentier, A., Grillas, P. and Thompson, J.D. (2000) The effect of population size limitation on fecundity in mosaic populations of the clonal macrophyte Scirpus maritimus (Cyperaceae). Amer. J. Bot 87, 502–507.

    Article  CAS  Google Scholar 

  • Culver, D.C. (1982) Cave Life: Evolution and Ecology. Harvard University Press, Cambridge, MA, USA.

    Google Scholar 

  • Dorken, M.E. and Eckert, C.G. (2001) Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae). J. Ecol 89, 339–350.

    Article  Google Scholar 

  • Eckert, C.G. (1999) Clonal plant research: proliferation, integration, but not much evolution. Amer. J. Bot 86, 1649–1654.

    Article  Google Scholar 

  • Eckert, C.C. (2000) Contributions of autogamy and geitonogamy to self-fertilization in a mass-flowering, clonal plant. Ecology 82, 532–542.

    Article  Google Scholar 

  • Eckert, C.G. and Barrett, S.C.H. (1992) Stochastic loss of style morphs from populations of tristylous Lythrum salicaria and Decodon verticillatus (Lythraceae). Evolution 46, 1014–1029.

    Article  Google Scholar 

  • Eckert, C.G. and Barrett, S.C.H. (1993) Patterns of genotypic diversity and clonal reproduction in Decodon verticillatus (Lythraceae). Amer. J. Bot 80, 1175–1182.

    Article  Google Scholar 

  • Eckert, C.G. and Barrett, S.C.H. (1995) Style morph ratios in tristylous Decodon verticillatus (Lythraceae): selection versus historical contingency. Ecology 76, 1051–1066.

    Article  Google Scholar 

  • Eckert, C.G., Dorken, M.E. and Mitchell, S.A. (1999) Loss of sex in clonal populations of a flowering plant, Decodon verticillatus (Lythraceae). Evolution 53, 1079–1092.

    Article  Google Scholar 

  • Eckert, C.G., Manicacci, D. and Barrett, S.C.H. (1996) Genetic drift and founder effect in native versus introduced populations of an invading plant, Lythrum salicaria (Lythraceae). Evolution 50, 1512–1519.

    Article  Google Scholar 

  • Eckert, C.G., Massonnet, B. and Thomas, J.J. (2000) Variation in sexual and clonal reproduction among introduced populations of flowering rush, Butomus umbellatus (Butomaceae). Can. J. Bot 78, 437–446.

    Google Scholar 

  • Ellstrand, N.C. and Roose, K.L. (1987) Patterns of genotypic diversity in clonal plant species. Amer. J. Bot 74, 123–131.

    Article  Google Scholar 

  • Emerson, A.E. (1961) Vestigial characters of termites and processes of regressive evolution. Evolution 15, 115–131.

    Article  Google Scholar 

  • Eriksson, O. (1989) Seedling dynamics and life histories in clonal plants. Oikos 55, 231–238.

    Google Scholar 

  • Eriksson, O. (1992) Evolution of seed dispersal and recruitment in clonal plants. Oikos 63, 439–448.

    Google Scholar 

  • Eriksson, O. (1996) Regional dynamics of plants: a review of evidence for remnant, source-sink and metapopulations. Oikos 77, 248–258.

    Google Scholar 

  • Fong, D.W., Kane, T.C. and Culver, D.C. (1995) Vestigialization and loss of nonfunctional characters. Ann. Rev. Ecol. Syst 26, 249–268.

    Article  Google Scholar 

  • Gliddon, C., Belhassen, E. and Gouyon, P.-H. (1987) Genetic neighbourhoods in plants with diverse systems of mating and different patterns of growth. Heredity 59, 29–32.

    Article  Google Scholar 

  • Haldane, J.B.S. (1933) The part played by recurrent mutation in evolution. Amer. Nat. 67, 5–19. Hamrick, J.L. and Godt, M.J. ( 1990 ) Allozyme diversity in plant species. In A.H.D. Brown, M.T.

    Google Scholar 

  • Clegg, A.L. Kahler and B.S. Weir (eds) Plant Population Genetics, Breeding, and Genetic Resources Sinauer, Sunderland, MA, USA, pp. 43–63.

    Google Scholar 

  • Harada, Y., Kawano, S. and Iwasa, Y. (1997) Probability of clonal identity: inferring the relative success of sexual versus clonal reproduction from spatial genetic patterns. J. Ecol 85, 591–600.

    Article  Google Scholar 

  • Hebert, P.D.N., Ward, R.D. and Weider, L.J. (1988) Clonal-diversity patterns and breeding system variation in Daphnia pulex, an asexual-sexual complex. Evolution 42, 147–159.

    Article  Google Scholar 

  • Holt, R.D. and Keitt, T.H. (2000) Alternative causes for range limits: a metapopulation perspective. Ecology Letters 3, 41–47.

    Article  Google Scholar 

  • Hutchinson, G.E. (1975) A Treatise on Limnology. Volume III. Lirnnological Botany. John Wiley and Sons, New York, NY, USA.

    Google Scholar 

  • Kirkpatrick, M. and Barton, N.H. (1997) Evolution of a species’ range. Amer. Nat. 150, 1–23. Klekowski, E.J. Jr. (1988a) Mutation, Developmental Selection and Plant Evolution. Columbia University Press, New York, NY, USA.

    Google Scholar 

  • Klekowski, E.J. Jr. (1988b) Progressive cross-and self-sterility associated with aging in fern clones and perhaps other plants. Heredity 61, 247–253.

    Article  Google Scholar 

  • Klekowski, E.J. Jr. (1988e) Mechanisms that maintain the genetic integrity of plants. In W. Greuter and B. Zimmer (eds) Proceedings of the XIV International Botanical Congress Königstein/Taunus, Koeltz, Germany, pp. 137–152.

    Google Scholar 

  • Klekowski, E.J. Jr. (1997) Somatic mutation theory of clonality. In H. de Kroon and J. van Groenendael (eds) The Ecology and Evolution of Clonal Plants. Backhuys, Leiden, The Netherlands, pp. 227–241.

    Google Scholar 

  • Krahulcová, A. and Jarolimová, V. (1993) Ecology of two cytotypes of Butomus umhellatus I. Karyology and breeding. Folia Geohot. Phytotax. 28, 385–411.

    Google Scholar 

  • Kudoh, H., Shibaike, H., Takasu, H., Whigham, D.F. and Kawano, S. (1999) Genet structure and determinants of clonal structure in a temperate deciduous woodland herb, Uvularia perIoliata. J. Ecol 87, 244–257.

    Article  Google Scholar 

  • Les, D.H. (1991) Genetic diversity in the monoecious hydrophile Ceratophyllum (Ceratophyllaceae). Amer. J. Bot. 78, 1070–1082.

    Google Scholar 

  • Les, D.H. and Philbrick, C.T. (1993) Studies of hybridization and chromosome number variation in aquatic angiosperms: evolutionary implications. Aquas. Bot. 44, 181–228.

    Google Scholar 

  • Levin, D.A. (1983) Polyploidy and novelty in flowering plants. Amer. Nat. 122, 1–25.

    Google Scholar 

  • Lloyd, D.G. and Webb, C.J. (1986) The avoidance of interference between the presentation of pollen and stigmas in angiosperms. I. Dichogamy. N. Zeal. J. Bot. 24, 135–162.

    Google Scholar 

  • Lynch, M. and Ritland, K. (1999) Estimation of pairwise relatedness with molecular markers. Genetics 152, 1753–1766.

    PubMed  CAS  Google Scholar 

  • Lynch, M. and Walsh, B. (1998) Genetics and Analysis of Quantitative Traits. Sinauer, Sunderland, MA, USA.

    Google Scholar 

  • Lynch, M., Bürger, R., Butcher, D. and Gabriel, W. (1993) The mutational meltdown in asexual populations. J. Hered 84, 339–344.

    PubMed  CAS  Google Scholar 

  • McKee, J. and Richards, A.J. (1996) Variability in seed production and germinability in common reed (Phragmites australis) in Britain and France with respect to climate. New Phytol. 133, 233–243.

    Google Scholar 

  • McLellan, A.J., Prati, D., Kaltz, O. and Schmid, B. (1997) Structure and analysis of phenotypic and genetic variation in clonal plants. In H. de Kroon and J. van Groenendael (eds) The Ecology and Evolution of Clonal Plants. Backhuys Publishers, Leiden, The Netherlands, pp. 185–210.

    Google Scholar 

  • Muirhead, C.A. and Lande, R. (1997) Inbreeding depression under joint selfing, outcrossing, and asexuality. Evolution 51, 1409–1015.

    Google Scholar 

  • Muller, H.J. (1949) The Darwinian and modern conceptions of natural selection. Proc. Am. Philos. Soc. 93, 459–470.

    Google Scholar 

  • Nakamura, T., Suzuki, T. and Kadono, Y. (1998) A comparative study of isoenzyme patterns of Hydrilla verticillata (L.f.) Royle in Japan. J. Plant Res. 111, 581–585.

    Google Scholar 

  • O’Connell, L.M. and Eckert, C.G. (1999) Differentiation in sexuality among populations of Antennaria parlinü (Asteraceae). Int. J. Pl. Sci. 160, 567–575.

    Google Scholar 

  • Olivieri, I. and Gouyon, P. (1997) Evolution of migration rate and other traits. In I.A. Hanski and M.A. Gilpin (eds) Metapopulation Biology. Ecology, Genetics and Evolution. Academic Press, San Diego, CA, USA, pp. 293–323.

    Google Scholar 

  • Grive, M.E. (1993) Effective population size in organisms with complex life-histories. Theor. Pop. Biol 44, 316–340.

    Article  Google Scholar 

  • Philbrick, C.T. and Les, D.H. (1996) Evolution of aquatic angiosperm reproductive systems. Bioscience 46, 813–826.

    Article  Google Scholar 

  • Pigott, C.D. (1981) Nature of seed sterility and natural regeneration of Tilia cordata at the northern limit in Finland. Ann. Bot. Fennici. 18, 255–263.

    Google Scholar 

  • Pigott, C.D. and Huntley, J.P. (1981) Factors controlling the distribution of Tilia cordata at the northern limit of its geographical range. III. Nature and causes of seed sterility. New Phytol. 87. 817–839.

    Article  Google Scholar 

  • Piquot, Y., Petit, D., Valero, M., Cuguen, J., de Laguerie, P. and Vernet, P. (1998) Variation in sexual and asexual reproduction among young and old populations of the perennial macrophyte Sparganium erectum. Oikos 82, 139–148.

    Article  Google Scholar 

  • Piquot, Y., Samitou-Laprade, P., Petit, D., Vernet, P. and Epplen, J.T. (1996) Genotypic diversity revealed by allozymes and oligonucleotide DNA fingerprinting in French populations of the aquatic macrophyte Sparganium erectum. Mol. Ecol. 5, 251–258.

    CAS  Google Scholar 

  • Poulson, T.L. and White, W.B. (1969) The cave environment. Science 165, 971–981.

    Article  PubMed  CAS  Google Scholar 

  • Preston, C.D. and Croft, J.M. (1997) Aquatic Plants in Britain and Ireland. Harley Books, Colchester, UK.

    Google Scholar 

  • Preuss, D. (1995) Being fruitful: genetics of reproduction in Arabidopsis. Tr. Genet. 11, 147–153.

    Article  CAS  Google Scholar 

  • Prout, T. (1964) Observations on structural reduction in evolution. Amer. Nat 98, 239–249.

    Article  Google Scholar 

  • Regal, P.J. (1977) Evolutionary loss of useless features: is it molecular noise suppression? Amer. Nat 111, 123–133.

    Article  CAS  Google Scholar 

  • Reinartz, J.A. and Les, D.H. (1994) Bottleneck-induced dissolution of self-incompatibility and breeding system consequences in Aster furcatus (Asteraceae). Amer. J. Bot 81, 446–455.

    Article  Google Scholar 

  • Reusch, T.B.H., Hukriede, W., Stam, W.T. and Olsen, J.L. (1999) Differentiating between clonal growth and limited gene flow using spatial autocorrelation of microsatellites. Heredity 2, 120–126.

    Article  Google Scholar 

  • Richards, A.J. (1986) Plant Breeding Systems. George Allen and Unwin, London, UK.

    Google Scholar 

  • Salisbury, E.J. (1942) The Reproductive Capacity of Plants. Bell, London, UK.

    Google Scholar 

  • Schmid, B. (1990) Some ecological and evolutionary consequences of modular organization and clonal growth in plants. Evol. Trends Plants 4, 25–34.

    Google Scholar 

  • Sculthorpe, C.D. (1967) The Biology of Aquatic Vascular Plants. Edward Arnold, London, UK.

    Google Scholar 

  • Silander, J.A. Jr. (1985) Microevolution in clonal plants. In J.B.C. Jackson, L.W. Buss and R.E.

    Google Scholar 

  • Cook (eds) Population Biology and Evolution of Clonal Organisms Yale University Press, London, UK, pp. 107–152.

    Google Scholar 

  • Smouse, P.E. and Peakall, R. (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 5, 561–573.

    Article  Google Scholar 

  • Soltis, D.E., Soltis, P.S. and Noyes, R.D. (1988) An electrophoretic investigation of intragametophytic selling in Equisetum arvense. Amer. J. Bot. 75, 231–237.

    Article  Google Scholar 

  • Starfinger, U. and Stöcklin, J. (1996) Seed, pollen, and clonal dispersal and their role in structuring plants populations. Prog. Bot 57, 336–355.

    Google Scholar 

  • Stebbins, G.L. (1971) Chromosomal Evolution in Higher Plants. Edward Arnold, London, UK. Suda, Y. (1995) Differentiation of Adonis L. in Japan IV. Floral characters. Acta Phytotax. Geobot 46, 29–46.

    Google Scholar 

  • Verkleij, J.A.C., Pieterse, A.H., Horneman, G.J.T. and Torenbeek, M. (1983) A comparative study of morphology and isoenzyme patterns of Hydrilla verticillata (L. f.) Royle. Aquatic Bot. 17, 43–59.

    Article  CAS  Google Scholar 

  • Vuorisalo, T., Tuomi, J., Pederson, B. and Käär, P. (1997) Hierarchical selection in clonal plants. In H. de Kroon and J. van Groenendael (eds) The Ecology and Evolution of Clonal Plants. Backhuys, Leiden, The Netherlands, pp. 243–261.

    Google Scholar 

  • Watkinson, A.R. and Powell, J.C. (1993) Seedling recruitment and the maintenance of clonal diversity in plant populations: A computer simulation of Ranunculus repens. J. Ecol. 81, 707–717.

    Article  Google Scholar 

  • Widén, B., Cronberg, N. and Widén, M. (1994) Genotypic diversity, molecular markers and spatial distribution of genets in clonal plants. In L. Soukupová, C. Marshall, T. Hara and T. Herben (eds) Plant Clonality, Biology and Diversity. Opulus Press, Uppsala, Sweden, pp. 139–157.

    Google Scholar 

  • Wilkens, H. (1988) Evolution and genetics of epigean and cave Astynax fasciatus (Characidae, Pisces). Support for the neutral mutation theory. Evol. Biol 23, 271–367.

    Article  Google Scholar 

  • Woodward, F.I. (1990) The impact of low temperatures in controlling the geographic distributions of plants. Phil. Trans. Roy. Soc. London B 326, 585–593.

    Article  Google Scholar 

  • Wright, S. (1964) Pleiotropy in the evolution of structural reduction and of dominance. Amer. Nat 98, 65–69.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Eckert, C.G. (2002). The loss of sex in clonal plants. In: Stuefer, J.F., Erschbamer, B., Huber, H., Suzuki, JI. (eds) Ecology and Evolutionary Biology of Clonal Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1345-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1345-0_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6047-1

  • Online ISBN: 978-94-017-1345-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics