Skip to main content

Restoration of aquatic macrophyte vegetation in acidified and eutrophicated shallow soft water wetlands in the Netherlands

  • Chapter
Ecological Restoration of Aquatic and Semi-Aquatic Ecosystems in the Netherlands (NW Europe)

Part of the book series: Developments in Hydrobiology ((DIHY,volume 166))

Abstract

Soft water lakes possess a highly characteristic vegetation adapted to limitation of carbon. Based upon hydrology, vegetation and geographic distribution, boreal and Atlantic lake types can be distinguished. Reducing the input of nutrients or liming, or both, the stream or its catchment is generally sufficient to restore typical soft water vegetation of boreal soft water lakes. The vegetation of Atlantic soft water lakes is subject to many anthropogenic degradation processes. Therefore, spontaneous recovery in the near future is not expected and restoration is urgently required. Removal of nutrient-rich, anoxic, organic sediments is a prerequisite for restoration of these lakes. In acidified or acid-sensitive lakes, additional measures against acidification are required. Controlled supply of calcareous, nutrient-poor water is much better than direct liming. The effects of these restoration measures strongly depend on the detrimental effects of processes such as atmospheric deposition, drainage, catchment acidification, eutrophication and reduced colonisation rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albers, P. H. & B. Camardese, 1993. Effects of acidification on metal accumulation by aquatic plants and invertebrates. II. Wetlands, ponds and small lakes. Env. Tox. Chem. 12: 969–975.

    Google Scholar 

  • Andersen, F. O. & K. R. Olsen, 1994. Nutrient cycling in shal low, oligotrophic Lake Kvie, Denmark. Effects of isoetids on the exchange of phosphorus between sediment and water. Hydrobiologia 275 /276: 255–276.

    Google Scholar 

  • Arts, G. H. P., 1990. Deterioration of atlantic soft-water systems and their flora, a historical account. Ph.D. Thesis, University of Nijmegen, the Netherlands: 197 pp.

    Google Scholar 

  • Arts, G. H. P. and R. S. E. W. Leuven, 1988. Floristic changes in shallow soft waters in relation to underlying environmental factors. Freshwat. Biol. 20: 97–111.

    Google Scholar 

  • Bellemakers, M. J. S. & M. Maessen, 1998. Effects of alkalinity and external sulphate and phosphorus load on water chemistry in enclosures in an eutrophic shallow lake. Wat. Air Soil Pollut. 101: 3–13.

    Google Scholar 

  • Bellemakers, M. J. S., M. Maessen & G. M. Verheggen, 1990. Restauratie van verzuurde en geëutrofieerde zwak gehufferde ondiepe oppervlaktewateren; mogelijkheden tot herstel. Vakgroep Aquatische Oecologie en Biogeologie, Katholieke Universiteit Nijmegen.

    Google Scholar 

  • Bellemakers, M. J. S., M. Maessen, G. M. Verheggen & J. G. M. Roelofs, 1996. Effects of liming on shallow acidified moorland pools: a culture and a seed bank experiment. Aquat. Bot. 54: 37–50.

    Google Scholar 

  • Bobbink, R. and J. G. M. Roelofs, 1995. Nitrogen critical loads for natural and semi-natural ecosystems: the empirical approach. Wat. Air Soil Pollut. 85: 2413–2418.

    Google Scholar 

  • Boxman, A. W., K. Blanck, T. E. Brandrud, B. A. Emmett, P. Gundersen, R. P. Hogervorst, O. J. Kjoenaas, H. Persson and V. Timmermann, 1998. Vegetation and soil biota response to experimentally-changed nitrogen inputs in coniferous forest ecosystems of the NITREX. For. Ecol. Man. 101: 65–80.

    Google Scholar 

  • Brouwer, E., R. Bobbink, F. Meeuwsen and J. G. M. Roelofs, 1996a. Recovery from acidification in aquatic mesocosms after reducing ammonium and sulphate deposition. Aquat. Bot. 56: 119–130.

    Google Scholar 

  • Brouwer, E., R. Bobbink, G. Verheggen and J. G. M. Roelofs, 1996b. Effectgerichte maatregelen tegen verzuring en eutrofiëring van oppervlaktewateren; eindrapport monitoringsprogramma tweede fase. Vakgroep Oecologie, Werkgroep Milieubiologie, KUN., in opdracht van de directie N.B.L.F. van het ministerie van L.N.V.: 159 pp. (in Dutch).

    Google Scholar 

  • Brouwer, E. and J. G. M. Roelofs, 1998, Groundwater as an alternative for the supply of eutrophied surface water in nutrient poor soft water pools. Mitt. AG Geobot. Schleswig-Holstein u. Hamburg 57: 121–127.

    Google Scholar 

  • Brouwer, E. and J. G. M. Roelofs, 2001. Degraded soft water lakes: possibilities for restoration. Rest. Ecol., 9 (2): 155–166.

    Article  Google Scholar 

  • Brouwer, E., J. Soontiëns, R. Bobbink and J. G. M. Roelofs, 1999. Sulphate and bicarbonate as key factors in sediment degradation and restoration of Lake Banen. Aquat. Conserv. 9: 121–132.

    Google Scholar 

  • Catling, P. M., B. Freedman, J. J. Kerekes and L. P. Lefkovitch, 1985. Aquatic plants of acid lakes in Kejimkujik National Park, Nova Scotia; floristic composition and relation to water chemistry. Can. J. Bot. 64: 724–729.

    Google Scholar 

  • Christensen, K. K. and C. Wigand, 1998. Formation of root plaques and their influence on tissue phosphorus content in Lobelia dortmanna. Aquat. Bot. 61: 33–37.

    Google Scholar 

  • Cooke, R. B., C. A. Kelly, D. W. Schindler and M. A. Turner, 1986. Mechanisms of hydrogen ion neutralization in an experimentally acidified lake. Limnol. Oceanogr. 31: 134–148.

    Google Scholar 

  • Cullen, P. and C. Forsberg, 1988. Experiences with reducing point sources of phosphorus to lakes. Hydrobiologia 170: 321–336.

    Article  CAS  Google Scholar 

  • Dillon, P. J., R. A. Reid and R. Girard, 1986. Changes in the chemistry of lakes near Sudbury, Ontaria following reductions of SO2 emissions. Wat. Air Soil Pollut. 31: 59–65.

    Google Scholar 

  • Ek, A., O. Grahn, H. Hultberg and I. Renberg, 1995. Recovery from acidification in lake Orvattnet, Sweden. Wat. Air Soil Pollut. 85: 1795–1800.

    Google Scholar 

  • Flessa, H., 1994. Plant-induced changes in redox-potential of the rhizospheres of the submerged vascular macrophytes Myriophvllum verticillatutn L. and Ranunculus circinatus L. Aquat. Bot. 4: I19–129.

    Google Scholar 

  • Gacia, E., E. Ballesteros, L. Camarero, O. Delgardo, A. Palau, J. L. Riera and J. Catalan, 1994. Macrophytes from lakes in the eastern Pyrenees: community composition and ordination in relation to environmental factors. Freshwat. Biol. 32: 73–82.

    Google Scholar 

  • Garrison, P. J., T. Asplund, L. Cleckner, S. Engel, R. G. Rada, W. A. Rose and J. G. Wiener, 1996. Wisconsin Acid Deposition Monitoring and Evaluation Program, 1995 annual report. State of Wisconsin. Department of Natural Resources: 47–60.

    Google Scholar 

  • Gulati, R. D. and E. Van Donk, 2002. Lakes in the Netherlands, their origin, eutrophication and restoration: state-of-the-art review. Hydrobiologia 478/Dev. Hydrobiol. 166: 73–106.

    Article  Google Scholar 

  • Jansson, M., G. Persson and O. Broberg, 1986. Phosphorus in acidified lakes: the example of Lake Gârdsjn, Sweden. Hydro-biologia 139: 81–96.

    Google Scholar 

  • Kaplan. K. and T. Muer, 1990. Beobachtungen zum Diasporen-reservoir im Bereich ehemaliger Heideweiher. Flor. Rundbr. 24: 38–45.

    Google Scholar 

  • Keeley. J. E., C. M. Walker and R. P. Mathews, 1983. Crassulacean acid metabolism in Isoetes bolanderi in high elevation oligotrophic lakes. Oecologia 58: 63–69.

    Article  Google Scholar 

  • Kilham, P., 1982. Acid precipitation: Its role in the alkalization of a lake in Michigan. Limnol. Oceanogr. 27: 856–867.

    Article  CAS  Google Scholar 

  • Kok, C. J. and B. J. Vande Laar. 1990. Influence of pH and buffering capacity on the decomposition of Nvmphaea alba L. detritus in laboratory experiments: a possible explanation for the inhibition of decomposition at low alkalinity. Verh. int. Ver. Limnol. 24: 2689–2692.

    Google Scholar 

  • Lee, Y. H., H. Hultberg, H. Sverdrup and G. C. Borg, 1995. Are ion exchange processes important in controlling the cation chemistry of soil-and runoff waters? Wat. Air Soil Pollut. 85: 1819–1824.

    Article  CAS  Google Scholar 

  • Likens, G. E., C. T. Driscoll and D. C. Buso, 1996. Long-term effects of acid-rain: response and recovery of a forest ecosystem. Science 272: 244–245.

    Article  CAS  Google Scholar 

  • Lucassen, C. H. E. T., R. Bobbink, M. M. A. Oonk, T. E. Brandrud and J. G. M. Roelofs, 1999. The effects of liming and reacidification on the growth of Juncus bulbosus: a mesocosm experiment. Aquat. Bot. 64: 95–103.

    Google Scholar 

  • Maherly, S. C., 1985a. Photosynthesis by Fontinalis antipvretica. I. Interaction between photon irradiance, concentration of carbon dioxide and temperature. New Phytol. 100: 127–140.

    Article  Google Scholar 

  • Maberly, S. C., 1985b. Photosynthesis by Fontinalis antipvretica. Il. Assessment of environmental factors limiting photosythesis and production. New Phytol. 100: 141–155.

    Article  Google Scholar 

  • Madsen, T. V., S. C. Maherly and G. Bowes, 1996. Photosynthetic acclimation of submersed angiosperms to CO2 and HCO3. Aquat. Bot. 53: 15–30.

    Google Scholar 

  • Madsen, T. V. and K. Sand-Jensen, 1994. The interactive effects of light and inorganic carbon on aquatic plant growth. Plant Cell Env. 17: 955–962.

    Article  CAS  Google Scholar 

  • Maessen, M., J. G. M. Roelofs, M. J. S. Bellemakers and G. M. Verheggen, 1992. The effects of aluminium, aluminium/calcium ratios and pH on aquatic plants from poorly buffered environments. Aquat. Bot. 43: 115–127.

    Google Scholar 

  • Marsden, M. W, 1989. Lake restoration by reducing external phosphorus loading: the influence of sediment phosphorus release. Freshwat. Biol. 21: 139–162.

    Article  CAS  Google Scholar 

  • Maurizi, S. and F. Poillon, 1992. Restoration of Aquatic Ecosystems. National Acadamy Press, Washington D.C.: 552 pp.

    Google Scholar 

  • Moss, B., J. Stansfield, K. Irvine, M. Perrows and G. Phillips, 1996. Progressive restoration of a shallow lake: a 12-year experiment in isolation, sediment removal and biomanipulation. J. appl. Ecol. 33: 71–86.

    Google Scholar 

  • Ozimek, T., R. D. Gulati and E. van Donk, 1990. Can macrophytes be useful in biomanipulation of lakes? The Lake Zwemlust example. Hydrobiologia 200 /201: 399–407.

    Article  Google Scholar 

  • Paffen, B. G. P. and J. G. M. Roelofs, 1991. Impact of carbon dioxide and ammonium on the growth of submerged Sphagnum cuspidatum. Aquat. Bot. 40: 61–71.

    Google Scholar 

  • Pedersen, O. and K. Sand-Jensen, 1995. Diel pulses of 02 and CO2 in sandy lake sediments inhabited by Lobelia dortmanna. Ecology 76: 1536–1545.

    Article  Google Scholar 

  • Pietsch, W. H. 0., 1996. Recolonization and development of vegetation on mine spoils following brown coal mining in Lusatia. Wat. Air Soil Pollut. 91: 1–15.

    Google Scholar 

  • Rasmussen, L., H. Hultberg and B. J. Cosby, 1995. Experimental studies and modelling of enhanced acidification and recovery. Wat. Air Soil Pollut. 85: 77–88.

    Google Scholar 

  • Reuss, J. 0., B. J. Cosby and R. F. Wright. 1987. Chemical processes governing soil and water acidification. Nature 329: 27–31.

    Google Scholar 

  • Risgaard-Petersen, N. and K. Jensen, 1997. Nitrification and denitrification in the rhizosphere of the aquatic macrophyte Lobelia dortmanna L. Limnol. Oceanogr. 42: 529–537.

    Google Scholar 

  • Roelofs, J. G. M., 1983. Impact of acidification and eutrophication on macrophyte communities in soft waters in the Netherlands. I. Field observations. Aquat. Bot. 17: 139–155.

    Article  CAS  Google Scholar 

  • Roelofs, J. G. M., 1986. The effect of airborne sulphur and nitrogen deposition on aquatic and terrestrial heathland vegetation. Experientia 42: 372–377.

    Article  CAS  Google Scholar 

  • Roelofs, J. G. M., 1991. Inlet of alkaline river water into peaty lowlands: effects on water quality and Stratiotes abides L. stands. Aquat. Bot. 39: 267–293.

    Article  CAS  Google Scholar 

  • Roelofs, J. G. M., J. A. A. R. Schuurkes and A. J. M. Smits, 1984. Impact of acidification and eutrophication on macrophyte communities in soft waters. II. Experimental studies. Aquas. Bot. 18: 389–411.

    Google Scholar 

  • Roelofs, J. G. M., T. E. Brandrud and A. J. P. Smolders, 1994. Massive expansion of Juncos bulbosus L. after liming of acidified SW Norwegian lakes. Aquat. Bot. 48: 187–202.

    Google Scholar 

  • Roelofs, J. G. M., R. Bobbink, E. Brouwer and M. C. C. de Graaf, 1996. Restoration ecology of aquatic and terrestrial vegetation on non-calcareous sandy soils in The Netherlands. Acta Bot. Neerl. 45: 517–541.

    Google Scholar 

  • Rprslett, B., 1991. Principal determinants of aquatic macrophyte richness in Northern European lakes. Aquat. Bot. 39: 173–193.

    Article  Google Scholar 

  • Rudd, J. W. M., C. A. Kelly, D. W. Schindler and M. A. Turner, 1988. Disruption of the nitrogen cycle in acidified lakes. Science 140: 1515–1517.

    Google Scholar 

  • Sand-Jensen. K., 1983. Photosynthetic carbon sources of stream macrophytes. J. exp. Bot. 34: 198–210.

    Article  CAS  Google Scholar 

  • Schindler, D. W., 1974. Eutrophication and recovery in experimental lakes: implications for lake management. Science 184: 897–899.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, D. W., 1986. The significance of in-lake production of alkalinity. Wat. Air Soil Pollut. 30: 931–944.

    Article  CAS  Google Scholar 

  • Schnoor, J. L. and W. Stumm, 1986. The role of chemical weathering in the neutralization of acidic deposition. Schweiz. Z. Hydrol. 48: 171–195.

    Google Scholar 

  • Schuurkes, J. A. A. R.. C. J. Kok and C. Den Hartog, 1986. Ammonium and nitrate uptake by aquatic plants from poorly buffered and acidified waters. Aquat. Bot. 24: 131–146.

    Google Scholar 

  • Schuurkes, J. A. A. R., M. A. Elbers, J. J. F. Gudden and J. G. M. Roelofs, 1987. Effects of simulated ammonium sulphate and sulphuric acid rain on acidification, water quality and flora of small-scale soft water ecosystems. Aquat. Bot. 28: 199–226.

    Google Scholar 

  • Seddon, B., 1972. Aquatic macrophytes as limnological indicators. Freshwat. Biol. 2: 107–130.

    Article  Google Scholar 

  • Simons, J., M. Ohm, R. Daalder, P. Boers and W. Rip, 1994. Restoration of Botshol (The Netherlands) by reduction of external nutrient load: recovery of a characean community, dominated by Chara connivens. Hydrobiologia 275 /276: 243–253.

    Article  Google Scholar 

  • Van Dam, H., 1997. Vennen herstellen zieh gedeeltelijk van verzuring. H2O 30: 366–370.

    Google Scholar 

  • Van den Berg, M., M. Scheffer, E. H. van Nes and H. Coops, 1999. Dynamics and stability of Chara sp. and Potamogeton pectinatus in a shallow lake changing in eutrophication level. Hydrobiologia 409: 335–342.

    Article  Google Scholar 

  • Wetzel, R. G., E. S. Brammer, K. Lindström and C. Forsberg, 1985. Photosynthesis of submersed macrophytes in acidified lakes. II. Carbon limitation and utilization of benthic CO2 sources. Aquat. Bot. 22: 107–120.

    Google Scholar 

  • Yan, N. D., G. E. Miller, I. Wile and G. C. Hitchin, 1988. Richness of aquatic macrophyte floras of soft water lakes of differing pH and trace metal content in Ontaria, Canada. Aquat. Bot. 23: 27–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Roelofs, J.G.M., Brouwer, E., Bobbink, R. (2002). Restoration of aquatic macrophyte vegetation in acidified and eutrophicated shallow soft water wetlands in the Netherlands. In: Nienhuis, P.H., Gulati, R.D. (eds) Ecological Restoration of Aquatic and Semi-Aquatic Ecosystems in the Netherlands (NW Europe). Developments in Hydrobiology, vol 166. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1335-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1335-1_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6174-4

  • Online ISBN: 978-94-017-1335-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics