Advertisement

Global Gravity Field Recovery Using Solely GPS Tracking and Accelerometer Data from CHAMP

  • C. Reigber
  • G. Balmino
  • Peter Schwintzer
  • R. Biancale
  • A. Bode
  • J.-M. Lemoine
  • R. König
  • S. Loyer
  • H. Neumayer
  • J.-C. Marty
  • F. Barthelmes
  • F. Perosanz
  • S. Y. Zhu
Part of the Space Sciences Series of ISSI book series (SSSI, volume 17)

Abstract

A new long-wavelength global gravity field model, called EIGEN-1. has been derived in a joint German-French effort from orbit perturbations of the CHAMP satellite, exploiting CHAMPGPS satellite-to-satellite tracking and on-board accelerometer data over a three months time span. For the first time it becomes possible to recover the gravity field from one satellite only. Thanks to CHAMP’s tailored orbit characteristics and dedicated instrumentation, providing continuous tracking and on-orbit measurements of non-gravitational satellite accelerations. the three months CHAMP-only solution provides the geoid and gravity with an accuracy of 20 cm and 1 mgal, respectively, at a half wavelength resolution of 550 km, which is already an improvement by a factor of two compared to any pre-CHAMP satellite-only gravity field model.

Keywords

Global Position System Gravity Field Geoid Height Global Position System Satellite Precise Orbit Determination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biancale, R., Balmino. G. Lemoine. i.-M., Many. i-C., Moynot. B., Ranier. F., Exertier, P., Laurain, O., Gegout. F. Schwinizer. P., Reigher. C., Bode. A., Konig, R., Massmann, F-El., Raimondo, i-C., Schmidt. R. and Zhu, S. Y.: 2000. ‘A new global Eanh’s gravity field model t’rom satellite orbit pcrturbations: GRIM5-Sl’. Geopliys. Res. Letters 27, 3611–3614.CrossRefGoogle Scholar
  2. European Space Agency: 1999. ‘Gravity Field and Steady-State Ocean Circulation Mission (GOCE)’. The four candidate Earth explorer core missions. Report for mission selection. Noordwijk. The Netherlands. SP-1233 (1).217 pp.Google Scholar
  3. Galas. R., Wickcrt,i. and Burghardt. W.: 2001, HIR low latency GPS ground (racking nctwork for CHAMP’, Phys, Chew, Earth (A) 26. 619–652.Google Scholar
  4. Heiskanen. W. and Moritz. H.: 1967. Physical Geodesy. W.H. Freemann. San Francisco. 364 pp.Google Scholar
  5. Kuang. D., Bar-Server. Y., Bertigcr. W., Dcsai. S., Haines, B., lijima. B., Kruiiinga. O., Mechan. Th. and Romans, L.: 2001. ‘Precise orbit determination for CHAMP using GPS data from BlackJack receiver’, 2001 ION National Technical Meeting Proceedings, Session El: Scientific Applications, Timing, and Frequency. Long Beach. California. 9 pp.Google Scholar
  6. Lemoine. F. G., Kenyon. S.C., Factor. J. K., Trimmer. R. O., Pavlis. N. K., Chinn. D. S., Cox, C. M., Klosko. SM., Luthcke. S.B., Torrence. M.H., Wang. Y.M., Williamson. R.G., Pavlis. E.C., Rapp. R. H. and Olson, T. R.: 1998, ‘The development ol’ thc joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96’. NASA Technical Paper. Goddard Space Flight Center. Greenhelt. NASAITP- 1998–206861. 509 pp.Google Scholar
  7. Reigber.C.: 1989. ‘Gravity field recovery from satellitetracking data. in F. SansO. R. Rummel(eds.). Theory of satellite geodesy and gravity field determination, Lectare notes in Earth sciences 25. Springer. Berlin. Heidelberg. New York. 197–234.Google Scholar
  8. Reigber. C., Sehwintzer. P. and LUhr. H.: 1999. ‘The CHAMP geopotential mission’.RolL Geof Teor Appl. 40. 285–289.Google Scholar
  9. Reigber. C., Balmino. 0,. Schwintzer. P., Biancale. R., Bode. A., Lemoine. J.-M., KOnig, R,. Loyer, S., Neumayer. H., Marty. 1.-C., Barthelmes. F., Perosanz. F. and Zhu. S. Y.: 2002. A high-quality global gravity field model ftom CHAMP GPS tracking data and aceelerometry (EIGEN-l S). Geopkvs. Res. Len. 29 (14). 10.1 029/2002GL0 15064.Google Scholar
  10. Schwintzer. P.: 1990. ‘Sensitivity analysis in least squares gravity held modelling by means of redundancy decomposition of stochastic a-priori information’. Internal report P515 1l901t)GFI. t)GFI Dept. 1. Munich, 14 pp.Google Scholar
  11. Semptner. A.J. and Chervin, R.M.: 1992, ‘Ocean circulation t’romaglobal eddy-resolving model’. 1. Geophys. Res. 97 C4. 5493–5550.Google Scholar
  12. Tapley, WI). and Reigber, C.: 2001. ‘The GRACE mission: stall’s and future plans’, Eas Trans AGU 82 (47). Fall Meet. Suppl. G41 C-02.Google Scholar
  13. Touboul, R. Willemenot, E., Poulon. B. and.Iosselin. V.: 1999, ‘Acelerometers for CHAMP, GRACE and GOCE space missions: synergy and evolution’. Boll. Geof. Teoe: Appl. 40. 321–327.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • C. Reigber
    • 1
  • G. Balmino
    • 2
  • Peter Schwintzer
    • 1
    • 3
  • R. Biancale
    • 2
  • A. Bode
    • 1
  • J.-M. Lemoine
    • 2
  • R. König
    • 1
  • S. Loyer
    • 2
  • H. Neumayer
    • 1
  • J.-C. Marty
    • 2
  • F. Barthelmes
    • 1
  • F. Perosanz
    • 2
  • S. Y. Zhu
    • 1
  1. 1.Dept. 1 ‘Geodesy and Remote Sensing’GeoForschungsZentrum Potsdam (GFZ)PotsdamGermany
  2. 2.Groupe de Recherche de Géodésie Spatiale (GRGS)ToulouseFrance
  3. 3.Dept. 1, Telegrafenberg A 17GeoForschungsZentrum PotsdamPotsdamGermany

Personalised recommendations