Advertisement

Aiming at a 1-CM Orbit for Low Earth Orbiters: Reduced-Dynamic and Kinematic Precise Orbit Determination

  • P. N. A. M. Visser
  • J. Van Den Ijssel
Part of the Space Sciences Series of ISSI book series (SSSI, volume 17)

Abstract

The computation of high-accuracy orbits is a prerequisite for the success of Low Earth Orbiter (LEO) missions such as CHAME, GRACE and GOCE. The mission objectives of thcse satellites cannot he reached without computing orbits with an accuracy at the few cm level. Such a level of accuracy might be achieved with the techniques of reduced-dynamic and kinematic precise orbit determination (POD) assuming continuous Satellite-to-Satellite Tracking (SST) by the Global Positioning System (GPS), Both techniques have reached a high level of maturity and have been successfully applied to missions in the past, for example to TOPEX/POSEIDON (T/P), leading to (sub-)decimeter orbit accuracy. New LEO gravity missions are (to be) equipped with advanced GPS receivers promising to provide very high quality SST observations thereby opening the possibility for computing em-level accuracy orbits. The computation of orbits at this accuracy level does not only require high-quality GPS receivers, hut also advanced and demanding observation preprocessing and correction algorithms. Moreover, sophisticated parameter estimation schemes need to be adapted and extended to allow the computation of such orbits. Finally, reliable methods need to be employed for assessing the orbit quality and providing feedback to the different processing steps in the orbit computation process.

Keywords

precise orbit determination reduced-dynamic kinematic GPS LEO 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bisnath. S.B.. and RB. Langley (2001). High-precision Platform Positioning with a Single GPS Receiver, in ION GPS 2001. 11–14 September 2001, Salt Lake C/tv, Urn/i. U.S.A.. 9 pp.Google Scholar
  2. Bock, 1-I.. G. Beefier, and U. Hugentobler (20(11). Kinematic Orbit Determination for Low Earth Orbiters (LEOs), IAG 2001 Scientific Assembly, 2–7 September 2001, Budapest, Hungarn CD-rom, 6 pp.Google Scholar
  3. Byun. S.H.. and BE. Schutz (2001). Iniproving satellite orbit solution using double-difierenced GPS carrier phase in kinematic mode, J. Geod. 75 (9/10). 533–543.Google Scholar
  4. ESA (1999). Gravity Field and Steady-State Ocean Circulation Mission. Reports forMiision Selection, The Four Candidate Fart/i Explorer Care Missions, SP-1233(1), European Space Agency, July 1999.Google Scholar
  5. NRC (1997), Satellite Gravity and the Geospbere: Contributions to the Studi’ of the Solid Earth and Its Fluid Envelopes. Committee on Earth Gravity from Space. National Research Council. National Academy Press, ISBN 0–309–05792–2.Google Scholar
  6. Reigher. Ch.. P. Schwintzer. and H. LOhr(l999), The CHAMP geopotential mission. In Bollettinodi Geofisica Teorica ad Applicata, Vol. 40, No. 3—4, Sep—Dec. 1999, Proceedings oft/ic 2nd Joint Meeting of the International Gravity and i/ic International Geoid Conunission, Trieste 7—12 Sept. 1998, ISSN0006–6/29, edited by I. Marson and H. SUnkcl, pp. 285 — 289.Google Scholar
  7. Rim. H.. Z. Kang. P. Nagel. S. Yoon. S. Bettadpur. B, Schulz. and B.Tapley (2001). CHAMP Precision Orbit Determination, AAS/AIAA 2001 AAS-0l-334.Google Scholar
  8. Smith. A. i. E.. B. T. Hesper. D. C. Kuijper. G. J. Mets. P.N.A.M. Visser. B. A. C. Ambrosius. and K. F. Wakker (1994), TOPEX/POSEIDON Data Analysis Study. Final Report. ESOC contract 10261/92/V/CS. 163 pp.. Faculty of Aerospace Engineering. Dell) University of Technology, Delft. The Netherlands. September 1994.Google Scholar
  9. Svehla, D., and M. Rothacher (2001), Kinematic Orbit Determination of LEOs Based on Zero or Douhle-ditIerence Algorithms Using Simulated and Real SST Data. IAG 2001 Scientific Assembly, 2—7 Septemher 2001, Budapest, 1-fun garn CD-mm, 7pp.Google Scholar
  10. Tapley. B. D.. iC. Ries. G.W. Davis. Ri. Eanes. BE. Schutz. C.K. Shum. MM. Watkins. iA.Google Scholar
  11. Marshall, R.S. Nerem, B.H. Putney. S.M. Klosko. SB. Luthcke, D. Pavlis.R.G. Williamson, andGoogle Scholar
  12. N.P. Zelensky (1994), Precision orbit determi nation for TOPEX/POSEIDON. J. Geophvs. Res.Google Scholar
  13. (C 12). 24,383—24,404.Google Scholar
  14. Tapley. B,D., et al. (1994). The JGM-3 gravity model. Ann. Geopliiw. 12. suppl. I. C192. Tapley. B.D.. S. Bettadpur. DR Chambers. M.K. Cheng. B.C. Gunter. Z. Kang. i. Kim. P. Nagel. J. C. Ries. Hi. Rim. P.1. Roesset. and 1. Roundhill (2001). Gravity field determination from CHAMP using OPS tracking and accelerometer data: initial results, in AGU Fall’OI Meeting, Abstract GSIA-0236.Google Scholar
  15. Visser. P.N.A.M.. and J. van den IJssel (2000). GPS-based precise orbit determination of the very low Earth orbiting gravity mission GOCE, J. Geod. 74 (7/8), 590 — 602.Google Scholar
  16. Wu. S.C., T,R Yunk. and CL. Thornton (1990). Reduced-Dynamic Technique for Precise Orbit Determination of Low Earth Satellites. J. Guidance 14 (1). 24 — 30.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • P. N. A. M. Visser
    • 1
  • J. Van Den Ijssel
    • 2
  1. 1.Delft Institute for Earth-Oriented Space ResearchDelft University of TechnologyDelftThe Netherlands
  2. 2.Delft Institute for Earth-Oriented Space ResearchDelft University of TechnologyThe Netherlands

Personalised recommendations