Advertisement

Measuring the Distribution of Ocean Mass Using GRACE

  • R. S. Nerem
  • J. M. Wahr
  • E. W. Leuliette
Part of the Space Sciences Series of ISSI book series (SSSI, volume 17)

Abstract

The Gravity Recovery and Climate Experiment (GRACE). which was successfully launched March 17. 2002. has the potential to create a new paradigm in satellite oceanography with an impact perhaps as large as was observed with (he arrival of precision satellite altimetry via TOPEX/Poscidon (T/P) in 1992. The simulations presented here suggest that GRACE will be able to monitor non-secular changes in ocean mass on a global basis with a spatial resolution of ~500 km and an accuracy of ~3 mm water equivalent. it should be possible to recover global mean ocean mass variations to an accuracy of ~1 mm, possibly much better if the atmospheric pressure modeling errors can be reduced. We have not considered the possibly significant errors that may arise due to temporal aliasing and secular gravity variations. Secular signals from glacial isostatic adjustment and the melting of polar ice mass arc expected to he quite large, and will complicate the recovery of secular ocean mass variations, Nevertheless, GRACE will provide unprecedented insight into the mass components of sea level change, especially when combined with coincident satellite altimeter measurements. Progress on these issues would provide new insight into the response of sea level to climate change.

Keywords

Average Radius Glacial Isostatic Adjustment Spherical Harmonic Coefficient Atmospheric Mass Ocean Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bender, P.L., Nerem, R.S., and Wahr, J.M.: 2003, “Possible Future Use of Laser Gravity Gradiometers”, Space Sci. Rev., this volume.Google Scholar
  2. Bettadpur, S.: 2000, personal communication.Google Scholar
  3. Cahanes. C.. Cazenave. A.! and Le Provost! C.: 2001. ‘Sea level change from Topex-Poseidon altimetry for 1993–1999 and possible warming of the southern oceans’. Geoplivx. Rex. Len. 28 (1), 9–12.Google Scholar
  4. Chambers. I). P., Chen. 3,, Nerem. R. S.. and Tapley. B. [1: 2(X)0. ‘tnterannual mean sea level change and the Earth’s water mass budget’. Geophvx. Rei Len. 27(19). 3073–3076.Google Scholar
  5. Diekey. J. 0., Bentley. C.R., Bilharn, R., Carton, iA., Eanes. R.J.. Herring. TA., Kaula, W.M., Lagerloel 0.5. B.. Rojstaczer. S.. Smith. W. H. F,. van den Dool. H, M.. Wahr. I. M.. and Zuher. MT.: 1997. ‘Satellite Gravity and the Geosphere: Contributions to [he Study of the Solid Earth and Its Fluid Envelope’. National Research Council, Washington. D. C.. pp. 112.Google Scholar
  6. Dukowicz, 3. K, and Smith. R, D.: ‘Implicit I’ree-surl’ace method for the Bryan-Cox-Semtner ocean model’. I Geophvx. Rex. 99. 7991–8014.Google Scholar
  7. Fu. L. and Smith. R. D.: 1996. ‘Global ocean circulation from satellite altinietry and high-resolution computer simulation’. Bull. Anz. MereoroL Soc. 77. 2625–2636.Google Scholar
  8. Huang, 3., van den Dool. H,. and Georgakakos. K, P.: 1996. ‘Analysis of model-calculated soil moisture over the United States (193 1–1993) and application to long-range temperature forecasts’, J, CIba. 9. 1350–1362.Google Scholar
  9. Jckeli. C.: 1981, ‘Alternative methods to smooth the EarTh’s gravity held’. Dept. of Geod. Sci. and Sun.. Ohio State Univ.. Columbus, Rep, 327.Google Scholar
  10. Kaula. W.M.: 1970. ‘The Terrestrial Environment: Solid Earth and Ocean Physics (The Williamstown Reporti. NASA Report CR-1579.Google Scholar
  11. Knudsen. P. and Andersen. 0,: 2002, ‘Correcting GRACE gravity IIelds I’or ocean tide effects’. Cxeophvx. Rex. Leti. 29(X). 19–1–19–4.Google Scholar
  12. Leuliette. B. W.. Nerem, F.. S.. and Russell. G. L.: 2002. ‘Detecting Time Variations in Gravity Associated with Climate Change’. J. Geoplrvs. Rex.. l0.1029/2001JB000404.Google Scholar
  13. Nerem, kS., Chambers, D,R, Leulictte. E,W,, Mitchum.G,T,, and Giese, B.S,: 1999, ‘Variations in global mean sea level associated with the 1997–1998 ENSOevent: Implications for measuring long tern] sea level change’. Geapkvx. Res Len. 26(19). 3005–3008Google Scholar
  14. Ray. RD.. Eanes. Ri.. Egbert. GD.. and Pavlis, N.K.: 2001. ‘Error Spectrum of the Global M2 Ocean Tide’. Geopln’x. Rex, Left, 28. 21–24.Google Scholar
  15. Reynolds. R.W, and Smith. T.S.: 1994. ‘Improved global sea surface temperature analysis’. I Climate 7. 929–948Google Scholar
  16. Rodell, Ni, and Famiglietti,J.S,: 1999. ‘Deteciihilityot’Variations in Continental WatcrStorage from Satellite Observations of the Time-Variable Gravity Field’. War. Rexoin: Rex. 35 (9). 2705–2723.Google Scholar
  17. Rodell. M., and Famiglietti.i.S.: 2001. ‘An analysis of terrestrial water storage variations in illinois with implications for the Gravity Recovery and Climate Experiment (GRACE)’, Water Rexoui: Re. 37(5). 1327–1340Google Scholar
  18. Rummel. F.: 1979. ‘Determination of the short-wavelength components of the gravity held from satellite-to-satellite tracking or satellite gradiometry: An attempt to an identification of problem areas’. Manuxci’ipra Geadetica 4. 1 07- I 48.Google Scholar
  19. Stammer. D,. Wunsch. C., and Ponte. F.M.: 2000. ‘De-Aliasing of Global High Frequency Barotropic Motions in Altimeter Observations’, Geopkvx. Rex. Len. 27 (8). 1175–1178.Google Scholar
  20. Tapley. B. D. and Reigber. C.: 2000, ‘The GRACE Mission: Status and Future Plans’, Lox Tranx. 81. F3llGoogle Scholar
  21. Thomas. 3. B.: 1999. ‘An Analysis of Gravity-Field Estimation Based on Intersatellite l)ual-l-Way Biased Ranging’. Jet Propulsion Laboratory. Pasadena. California.Google Scholar
  22. Thompson, P. F., Bcttadpur. S., Kim. J. R.. and Watkins. M. M.: 2000, ‘Short period variations in the gravity held and their impact on GRACE science’. Lox Tranx. 81 (48). F310.Google Scholar
  23. Tierney. C.. Wahr, 3.. Bryan. F.. and Zlotnicki. V.: 2000. ‘Short-period oceanic circulation: implicaF tions for satellite altin]etry’. Geophvx. Rex. Len. 27 (9). 1255–1258.Google Scholar
  24. Trenherth. K. B. and Guillemot, C. J.: 1994, ‘The total mass of the atmosphere’, I. Geophvx. Rex. 99(Dl I). 23,079–23.088Google Scholar
  25. Trenberth. KB., Christy. i. R.. and Olson. J. G.: 1988. ‘Global atmospheric mass, surface pressure, and watcr vapor variations (abstract)’, i. Geophvs. Res. 93(D9), 10,925-I 0.925.Google Scholar
  26. Velicogna. 1. and Wahr. J. M.: 2002a. ‘Post glacial rebound and Earth’s viscosity structure from GRACE’, I Geophvs. Re.s-., in press.Google Scholar
  27. Velicogna. I. and Wahr. J. M.: 2002h. ‘A method for separating Antarctic postglacial rebound and ice mass balance using future ICESaL Geoscience Laser Altimeter System. Gravity Recovery and Climate Experiment, and GPS satellite data’. J. Geojthvs. Re.s., 0. 102912001JB(X)0708.Google Scholar
  28. Velicogna. I.. Wahr,.1. M.. and Van den Dool. H.: 2001. ‘Can surface pressure he used to remove atmosphcric contributions from GRACE data with sufficient accuracy to rccover hydrological signals’. J. (ieophvs. Res, 106(B8). 16.415–16. 434.Google Scholar
  29. Wahr. J. M.. Molenaar. Nt. and Bryan. F.: 1998. ‘Time variability of the Earth’s gravity held: Hydrological and oceanic effects and their possible detection using GRACE’. I Geophvs. Res. IO3B 12). 30.205–30. 230.Google Scholar
  30. Wahr. J. M., Wingham, ft. and Bentley, C.: 2000, ‘A method of combining ICESat and GRACE satellite data to constrain Antarctic mass balance’. I Geophvs. Ray. 105(137). 16,279–16, 294.Google Scholar
  31. Wolff. M..: 1969, ‘Direct Measurements of the Earth’sGravitational Potential Using a Satellite Pair’. I Geophys. Res. 74 (22), 5295–5300.Google Scholar
  32. Wu, X.. Watkins, Nt Nt. Ivins, E. R., Kwok. R,, Wang, P.. Wahr, J. Nt: 2002, ‘Toward global inverse solutions for current and past ice mass variations: Contrihtition of secular satellite gravity and topography change measurements’. I Geop/iys. Res.. 10.1 029/2001JB000543.Google Scholar
  33. Wunsch, J.. Thomas. M., and Gruher. 1:2001, Simulation of oceanic bottom pressure for gravity space missions. Geophvs. J. tnt. 147. 428–434.Google Scholar
  34. Zlotnicki, V., Au, AR.. and Ponte. R.: 2001. ‘Atmospheric forcing ofabarotropic ocean model to dealias altimetry and GRACE’. Ens Trans. 82 (47). F288.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • R. S. Nerem
    • 1
  • J. M. Wahr
    • 2
  • E. W. Leuliette
    • 3
  1. 1.Colorado Center for Astrodynamics Research and Aerospace Engineering Sciences DepartmentUniversity of ColoradoBoulderUSA
  2. 2.Cooperative Institute for Research in Environmental Sciences and the Department of PhysicsUniversity of ColoradoBoulderUSA
  3. 3.Colorado Center for AstrodynamicsUniversity of ColoradoBoulderUSA

Personalised recommendations