Tidal Models in a New Era of Satellite Gravimetry

  • R. D. Ray
  • D. D. Rowlands
  • G. D. Egbert
Part of the Space Sciences Series of ISSI book series (SSSI, volume 17)


The high precision gravity measurements lo be made by recently launched (and recently approved) satellites place new demands on models of Earth, atmospheric, and oceanic tides. The latter is the most problematic. The ocean tides induce variations in the Earth’s geoid by amounis I hat far exceed the new satellite sensitivities, and tidal models must be used to correct for this. Two methods are used here lo determine the standard errors in current ocean tide models. Al long wavelengths these errors exceed the sensitivity of the GRACE mission. Tidal errors will not prevent the new satellite missions from improving our knowledge of the geopotential by orders of magnitude, but the errors may well contaminate GRACE estimates of temporal variations in gravity. Solar tides are especially problematic because of their long alias periods. The satellite data may be used lo improve tidal models once a sufficiently long time series is obtained. Improvements in the long-wavelength components of lunar tides are especially promising.


Ocean Tide Tide Model Tidal Signal Ocean Tide Model Lunar Tide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cheng, M. K.: 2002, ‘Gravitational perturbation theory for imersatel lite tracking’, J. Geod. 76. 169— 185.Google Scholar
  2. Egbert. G. D, and S, Y. Erofccva: 2002. ‘Efficient inverse modeling of barotropic ocean tides’, J. Atmos. Oceanic Tech. 19, 183–204.Google Scholar
  3. ESA: 1999, Gravity Field and Steady-State Ocean Circulation Mission, Rep. SP-1233, European Space Agency. Noordwijk. 217 pp.Google Scholar
  4. Knudsen, P and 0. Andersen: 2002, ‘Correcting GRACE gravity tie Ids for ocean tide effects’, Geophys. Res. Lett. 29(8). 19–1–19–4.Google Scholar
  5. Lambeck. K.: 1988, Geophysical Geodesy, Clarendon Press, Oxford.Google Scholar
  6. Lemoine, F. ct al.: 1998. The development of the joint NASA GSFC and NIMA gcopotential model EGM96. NASA Tech. Memo. 206861, Goddard Space Flight Center. Greenbelt. 575 pp.Google Scholar
  7. Matsumoto, K., T. Takanezawa, M. Ooe: 2000, ‘Ocean tide models developed by assimilating Topex/Poseidon altimeter data into hydrodynamical model’. J. Oceanogr. 56. 567–581.CrossRefGoogle Scholar
  8. Pavlis, E, C. and L. lorio: 2002. ‘The impact of tidal errors on the determination of the Lensc-Thirring effect from satellite laser ranging’. Int. J. Mod. Pliys. D, 11, 599–618.CrossRefGoogle Scholar
  9. Ray, R. D.: 1999, A global ocean lide model from Topex/Poseidon altimetry. NASA Tech. Memo. 209478. Goddard Space Flight Center, Greenbelt, 58 pp.Google Scholar
  10. Ray. R. D., R. J, Eancs, G. D. Egbert. N. K. Pavlis: 2001, ‘Error spectrum for the global Mi ocean tide’. Geophys. Res. Lett. 28, 21–24.Google Scholar
  11. Rowlands. D. D., R. D. Ray, D. S. Chinn, F. G. Lemoine: 2002, ‘Short-arc analysis of intersatellite tracking data in a gravity mapping mission’, J. Geod. 76. 307–316.Google Scholar
  12. Schrama. E. J. O.: 1996, ‘Gravity research missions reviewed in light of the indirect ocean tide potential’. in R. H. Rapp. A. A, Cazenave and R. S. Nerem (eds.). Global Gravity Field and Its Temporal Variations, Springer. Berlin, pp. 131–140.CrossRefGoogle Scholar
  13. Shum, C. K. et a I.: 1997, ‘Accuracy assessments of recent global ocean lide models’. J. Geophys. Res. 102. 25173–25194.CrossRefGoogle Scholar
  14. Tapley, B. D. and C. Reigber: 2000. ‘The GRACE mission: status and future plans’ (abstract). EOS, Trans. AGU, 81. Fall Suppl.. F307.Google Scholar
  15. Visser. P. et al.: 2002. ‘The European Earth Explorer Mission GOCE: Impact for the geoscienccs’. in J, Mitrovica and L. Vermeersen (eds.). Ice Sheets, Sea Level and the Dynamic Earth. American Geophysical Union, Washington.Google Scholar
  16. Wahr, J.. M. Molenaar. F. Bryan: 1998. Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE’, J. Geophys. Res. 103. 30205–30229.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • R. D. Ray
    • 1
    • 3
  • D. D. Rowlands
    • 1
  • G. D. Egbert
    • 2
  1. 1.Space Geodesy BranchNASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.College of Oceanic & Atmospheric SciencesOregon State UniversityCorvallisUSA
  3. 3.GSFCNASAGreenbeltUSA

Personalised recommendations