Skip to main content

Global Ocean Data Assimilation and Geoid Measurements

  • Chapter

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 17))

Abstract

Parts of geodesy and physical oceanography arc about to mature into a single modeling problem involving the simultaneous estimation of the marine geoid and the general circulation. Both fields will benefit. To this end, we present an ocean state estimation (data assimilation) framework which is designed to obtain a dynamically consistent picture of the changing ocean circulation by combining global ocean data sets of arbitrary type with a general circulation model (GCM), The impact of geoid measurements on such estimates of the ocean circulation are numerous. For the mean circulation, a precise geoid describes the reference frame for dynamical signals in altimetric sea surface height observations. For the time-varying ocean signal, changing geoid information might be a valuable new information about correcting the changing flow field on time scales from a few month to a year, but the quantitative utility of such information has not yet been demonstrated. For a consistent estimate, some knowledge of the prior error covariances of all data fields is required. The final result must be consistent with prior error estimates for the data. State estimation is thus one of the few quantitative consistency checks for new geoid measurements anticipated from forthcoming space missions. Practical quantitative methods will yield a best possible estimate of the dynamical sea surface which, when combined with satellite altimetric surfaces, will produce a best-estimate marine geoid. The anticipated accuracy and precision of such estimates raises some novel modeling error issues which have not conventionally been of concern (the Boussinesq approximation, selfattraction and loading). Model skill at very high frequencies is a major concern because of the need to de-alias the data obtained by the inevitable oceanic temporal undcrsampling dictated by realistic satellite orbit configurations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balazs, E. I, and Douglas, B. C.: 1979, ‘Geodetic leveling and the sealevel slope along the California coast’. J. Geophys. Res. 84, 6195–6206.

    Article  Google Scholar 

  • Condi, F. and Wunsch, C.: 2002, ‘Measuring gravity field variability, the geoid, ocean bottom pressure fluctuations, and their dynamical implications’, J. Geoph. Res., submitted for publication.

    Google Scholar 

  • Dewar, W. K., Hsuch, Y., McDougall, T. J., and Yuan, D,: 1998, ‘Calculation of pressure in occan simulations’,/. Rhys. Oceanogr. 28, 577–588.

    Google Scholar 

  • Drinkwater, M. R., Floberghagcn, R., Haagmans, R„ Muzi, D„ and Popcscu. A.: 2002, “GOCE: ESA’s First Earth Explorer Core Mission”, Space Sci. Rev., this volume.

    Google Scholar 

  • Fukumori, I.: 2001, ‘Data assimilation by models’, in Satellite Altimetry and Earth Sciences, L.-L. Fu and A. Cazenave (eds.), Academic, San Diego, 237–266.

    Chapter  Google Scholar 

  • Fukumori, I., Raghunath, R„ Fu, L.-L., and Chao, Y.: 1999, ‘Assimilation of TOPEX/POSEIDON altimeter data into a global ocean circulation model: How good are the results?’, J. Geophys. Res. 104, 25,647–25,665.

    Google Scholar 

  • Lemoinc, F., ct al.: 1997, ‘The development of the NASA GSFC and NIMA Joint Geopoten-tial Model’, in Segawa et al. (eds.). Proceedings of the International Symposium on Gravity, Geoid and Marine Geodesy, International Association of Geodesy Symposia, Vol. 117, 461–469, Springer-Vcrlag, Berlin.

    Google Scholar 

  • Levitus, S.. Burgett. R„ and Boycr, T.: 1994, World Ocean Atlas 1994, vol. 3, Salinity, and vol. 4, Temperature, NOAA Atlas NESDIS 3 4, U.S. Dep. of Comm., Washington, D.C.

    Google Scholar 

  • Losch, M. and Wunsch, C.: 2003, ‘Bottom topography as a control variable in an ocean model’, J. Atmos. and Ocean Techn., in press.

    Google Scholar 

  • Marsh, J.G, and Chang, E.S.: 1978, ‘5’ detailed gravimetric geoid in the northwestern Atlantic Ocean’, J. Mar. Geodesy 1, 253–261.

    Article  Google Scholar 

  • McDougall, T. J., Greatbatch, R. J., and Lu Y.: 2002, ‘On conservation equations in oceanography: how accurate are Boussinesq models?’, J. Pliys. Oceanogr. 32, 1574–1584.

    Article  Google Scholar 

  • Marotzke, J., Giering, R., Zhang, Q. K., Stammer, D., Hill, C. N.. and Lee, T.: 1999, ‘Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity’,/ Geophys. Research 104, 29,529–29,548.

    Google Scholar 

  • Marshall, J., Adcroft, A., Hill, C., Perclman, L., and Heisey,C.: 1997, ‘A finite-volume, incompressible navier-stokes model for studies of the ocean on parallel computers’, J. Geophys. Res. 102. 5753–5766.

    Article  Google Scholar 

  • Mcnemenlis, D. and Chechelnitsky. M.: 1998, ‘Error estimates for an ocean general circulation model from altimeter and acoustic tomography data“. Monthly Wea. Rev. 128. 763–778.

    Article  Google Scholar 

  • Oreskes, N., Shrader-Frechette, K., and Belitz, K.: 1994, ‘Verification, validation, and confirmation of numerical models in the earth sciences’, Science 263, 641–646.

    Article  Google Scholar 

  • Ponte. R. M., Stammer, D„ and Wunsch, C.: 2001, ‘Improved occan angular momentum estimates using an ocean model constrained by large-scale data’, Geophys. Res. Letters 28. 1775–1778.

    Google Scholar 

  • Spenccr, R., Foden, P. R., McGarry, C., Harrison, A. J., Vassie, J. M„ Baker, T. F., Smithson, M. J., Harangozo, S. A., and Woodworth, P. L.: 1993, ‘The ACCLAIM program in the South Atlantic and Southern Oceans’, Intl. Hydrog. Rev. 70. 7–21.

    Google Scholar 

  • Stammer, D., Wunsch, C., and Ponte, R.: 2000, ‘De-Aliasing of global high frequency barotropic motions in altimeter observations’. Geophysical Res. Letters 27, 1175–1178.

    Article  Google Scholar 

  • Stammer, D., Wunsch, C., Giering, R.. Eckert, C, Heimbach, P., Marotzke, J., Adcroft, A., Hill, C.N., and Marshall, J.: 2002a, ‘The global occan circulation during 1992–1997, estimated from ocean observations and a general circulation model’, J. Geophys. Res., 107(C9), 3118, DOl: 10.1029/2001JC000888.

    Google Scholar 

  • Stammer, D., Wunsch, C., Fukumori 1., and Marshall. J.: 2002b, ‘State estimation in modern occano–graphic research’, EOS, Transactions. American Geophysical Union, 83(27), 289–294–295.

    Google Scholar 

  • Stammer, D., Wunsch, C., Giering, R.. Eckert. C., Heimbach, P., Marotzke, J., Adcroft, A., Hill, C.N., and Marshall. J.: 2002c, ‘Volume, heat and freshwater transports of the global ocean circulation 1992–2000, estimated from a general circulation model constrained by WOCE data’, J. Geophys. Res., 108 (CI), 3007, DOI: 10.1029/2001 JC001115.

    Google Scholar 

  • Stammer, D., Ueyoshi, K., Large, W.B., Josey S., and Wunsch, C.: 2002d, ‘Improving air-sea flux estimates through global ocean data assimilation’, ECCO Report Series, Report 13, pp: 31 (see also http://www.ecco-group.org/reports.html ).

    Google Scholar 

  • Sturges, W.: 1974. ‘Sea level slope along continental boundaries’, J. Geophys. Res. 79. 825–830.

    Article  Google Scholar 

  • dc Szoeke, R. A. and Samclson, R. M.: 2002, ‘The duality between the Boussinesq and non- Boussinesq hydrostatic equations of motion’, J. Pliys. Oc. 32, 2194–2203.

    Article  Google Scholar 

  • Tapley, B. D. and Kim, M.-C.: 2001, ‘Applications to geodesy’, in Satellite Altimetry and Earth Sciences, L.-L. Fu and A. Cazcnave (eds.). Academic, San Diego, 371 —406.

    Google Scholar 

  • Wahr, J., Molcnaar, M.. and Bryan F.: 1998, “Time variability of the Earth’s gravity field; hydrological and oceanic effects and their possible detection using GRACE’, J. Geophys. Res. 103, 30,20530,229.

    Google Scholar 

  • Wunsch, C.; 1996, The Ocean Circulation Inverse Problem. 442 pp., Cambridge Univ. Press, New York.

    Google Scholar 

  • Wunsch, C. and Gaposchkin, E. M.: 1980, ‘Oil using satellite altimetry to determine the general circulation of the occans with application to geoid improvement“. Revs. Geophys and Space Phys 18, 725–745.

    Article  Google Scholar 

  • Wunsch, C. and Stammer, D.: 1998, ‘Satellite altimetry, the marine geoid and the oceanic general circulation’, Ann. Revs. Earth Plan. Scis. 26. 219–254.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wunsch, C., Stammer, D. (2003). Global Ocean Data Assimilation and Geoid Measurements. In: Beutler, G., Drinkwater, M.R., Rummel, R., Von Steiger, R. (eds) Earth Gravity Field from Space — From Sensors to Earth Sciences. Space Sciences Series of ISSI, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1333-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1333-7_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6334-2

  • Online ISBN: 978-94-017-1333-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics