Skip to main content

The Galactic Theory of Mass Extinctions: An Update

  • Conference paper
  • 113 Accesses

Abstract

Astronomical and geological evidence is consistent with the hypothesis that mass extinctions of life on Earth are related to impacts of comets whose flux is partly modulated by the dynamics of the Milky Way Galaxy. Geologic evidence for impact (ejects and large impact craters) has been found at times of mass extinction events, and the record of large dated craters shows a significant correlation with extinctions. Statistical analyses suggest that mass extinction events exhibit a periodic component of about 30 Myr, and periodicities of 30 ± 0.5 Myr and 35 ± 2 Myr have been extracted from sets of well-dated large impact craters. These results suggest periodic or quasi-periodic showers of impactors, probably Oort Cloud comets, with an approximately 30 or 36 Myr cycle. The best explanation for these proposed quasi-periodic comet showers involves the Sun’s vertical oscillation through the galactic disk, which may have a similar cycle time between crossings of the galactic plane. Further refinement of the model will depend on the identification and quantification of the dark matter component in the galactic disk, and discovery and accurate dating of additional impact craters.

Key words

  • Mass extinction — comet showers

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-017-1321-4_5
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-94-017-1321-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez, W.: 1986, Toward a Theory of Impact Crises, Eos, Trans. of the Amer. Geophys. Union, 67, 649–658.

    Google Scholar 

  • Alvarez, W. and Muller, R. A.: 1984, Evidence From Crater Ages for Periodic Impacts on the Earth, Nature, 308, 718–720.

    CrossRef  Google Scholar 

  • Bahcall, J.N., Flynn, C. and Gould, A.: 1992, Local Dark Matter from a Carefully Selected Sample, Astrophys. J., 389, 234–250.

    CrossRef  Google Scholar 

  • Fogg, M.J.: 1989, The Relevance of the Background Impact Flux to Cyclic Impact/Mass Extinction Hypotheses, Icarus, 79, 382–395.

    CrossRef  Google Scholar 

  • Gould, A., Bahcall, J. N. and Flynn, C.: 1996, Disk M Dwarf Luminosity Function from Hubble Space Telescope Star Counts, Astrophys. J., 465, 759–768.

    CrossRef  Google Scholar 

  • Grieve, R. A. F.: 1996, Chesapeake Bay and Other Terminal Eocene Impacts, Meteorit. and Planet. Sci., 31, 166–167.

    CrossRef  Google Scholar 

  • Grieve, R.A.F.: 1997, Extraterrestrial Impact Events: The Record in the Rocks and the Stratigraphic Column, Palaeoclimatology, Palaeogeography, Palaeoecology, 132, 5–23.

    CrossRef  Google Scholar 

  • Grieve, R. A. F. and Pesonen, L. J.: 1996, Terrestrial Impact Craters: Their Spatial and Temporal Distribution and Impacting Bodies, Earth, Moon and Planets, 72, 357–376.

    CrossRef  Google Scholar 

  • Grieve, R. A. F. and Shoemaker, E. M.: 1994, The Record of Past Impacts on Earth, in Hazards Due to Comets and Asteroids ( T. Gehrels, Ed.), Univ. of Arizona Press, Tucson, 417–462.

    Google Scholar 

  • Heisler, J. and Tremaine, S.: 1989, How Dating Uncertainties Affect the Detection of Periodicity in Extinctions and Craters, Icarus, 77, 213–219.

    CrossRef  Google Scholar 

  • Hildebrand, A. R., Pilkington, M., Connors, M., Ortiz-Aleman, C. and Chavez, R. E.: 1995, Size and Structure of the Chicxulub Crater Revealed by Horizontal Gravity Gradients and Cenotes, Nature, 376, 415–417.

    CrossRef  Google Scholar 

  • Hut, P., Alvarez, W., Elder, W. P., Hansen, T., Kauffman, E. G., Keller, G., Shoemaker, E. M. and Weissman, P. R.: 1987, Comet Showers as a Cause of Mass Extinctions. Nature, 329, 118–126.

    CrossRef  Google Scholar 

  • Lequeux, J., Allen, R. J. and Guilloteau, S.: 1993,. CO Absorption in the Outer Galaxy, Abundant Cold Molecular Gas, Astron. and Astrophys., 280, L23 - L26.

    Google Scholar 

  • Matese, J. J., Whitman, P. G., Innanen, K. A. and Valtonen, M. J.: 1995, Periodic Modulation of the Oort Cloud Comet Flux by the Adiabatically Changing Galactic Tide, Icarus, 116, 255–268.

    CrossRef  Google Scholar 

  • Matese, J. J., Whitman, P. G., Innanen, K. A. and Valtonen, M. J.: 1998, Variability of the Oort Comet Flux: Can it be Manifest in the Cratering Record?, Highlights in Astronomy, (in press).

    Google Scholar 

  • Matese, J. and Whitmire, D.: 1996, Tidal Imprint of Distant Galactic Matter on the Oort Comet Cloud, Astrophys. J., 472, L41 - L43.

    CrossRef  Google Scholar 

  • Matsumoto, M. and Kubotani, H.: 1996, A Statistical Test for Correlation Between Crater Formation Rate and Mass Extinctions, MNRAS, 282, 1407–1412.

    Google Scholar 

  • Melosh, H. J., Schneider, N. M., Zahnle, K. J. and Latham, D.: 1990, Ignition of Global Wildfires at the CretaceousfTertiary Boundary, Nature, 343, 251–254.

    CrossRef  Google Scholar 

  • Poag, C.W.: 1997, Roadblocks on the Kill Curve: Testing the Raup Hypothesis, Palaios, 12, 582–590.

    CrossRef  Google Scholar 

  • Pope, K. O., Baines, K. H., Ocampo, A. C. and Ivanov, B. A.: 1994, Impact Winter and the Cretaceous/Tertiary Extinctions: Results of a Chicxulub Asteroid Impact Model, Earth and Planet. Sci. Lett., 128, 719–725.

    CrossRef  Google Scholar 

  • Rampino, M. R. and Haggerty, B. M.: 1996, The “Shiva Hypothesis”: Impacts, Mass Extinctions, and the Galaxy, Earth, Moon and Planets, 72, 441–460.

    CrossRef  Google Scholar 

  • Rampino, M.R., Haggerty, B.M. and Pagano, T. C.: 1997, A Unified Theory of Impact Crises and

    Google Scholar 

  • Mass Extinctions: Quantitative Tests. Annals of the New YorkAcademy of Sciences, 822, 403–431.

    Google Scholar 

  • Rampino, M. R. and Stothers, R. B.: 1984a, Terrestrial Mass Extinctions, Cometary Impacts and the Sun’s Motion Perpendicular to the Galactic Plane, Nature, 308, 709–712.

    CrossRef  Google Scholar 

  • Rampino, M. R. and Stothers, R. B.: 1984, Geological Rhythms and Cometary Impacts, Science, 226, 1427–1431.

    CrossRef  Google Scholar 

  • Rampino, M. R. and R. B. Stothers, R. B.: 1986, Geologic Periodicities and the Galaxy, in The Galaxy and the Solar System ( R. Smoluchowski, J. N. Bahcall and M. S. Matthews, Eds.), Univ. of Ariz. P., Tucson, 241–259.

    Google Scholar 

  • Rampino, M.R. and Stothers, R. B.: 1988, Flood Basalt Volcanism During the Past 250 Million Years, Science, 241, 663–668.

    CrossRef  Google Scholar 

  • Rampino, M.R. and Stothers, R. B.: 1998, Mass Extinctions, Comet Impacts, and the Galaxy, Highlights in Astronomy, (in press).

    Google Scholar 

  • Raup, D. M:. 1992, Large-Body Impact and Extinction in the Phanerozoic, Paleobiology, 18, 80–88.

    Google Scholar 

  • Raup, D. M. and Sepkoski Jr, J. J.: 1984, Periodicity of Extinctions in the Geologic Past, Proc. of the Nat. Acad. of Sci. USA 81, 801–805.

    CrossRef  Google Scholar 

  • Raup, D. M. and Sepkoski, Jr, J. J.: 1986, Periodic Extinctions of Families and Genera, Science, 231, 833–836.

    CrossRef  Google Scholar 

  • Retallack, G. J., Seyedolali, A., Holser, W. T., Krinsley, D. and Krull, E. S.: 1996, Shocked Quartz at the Permian-Triassic Boundary in Australia and Antarctica, Geol. Soc. of Amer. Abstracts with Programs, 28, A-368.

    Google Scholar 

  • SepkoskiJr., J. J.: 1995, Patterns of Phanerozoic Extinction: A Perspective From Global Data Bases, in Global Events and Event Stratigraphy in the Phanerozoic ( O. H. Walliser, Ed.), Springer, Berlin, 35–51.

    Google Scholar 

  • Shoemaker, E. M. and Wolfe, R. F.: 1986, Mass Extinctions, Crater Ages, and Comet Showers, in The Galaxy and the Solar System ( R. Smoluchowski, J. N. Bahcall and M. S. Matthews, Eds.), Univ. of Ariz. P.,Tucson, 338–386.

    Google Scholar 

  • Shoemaker, E. M., Wolfe, R. F. and Shoemaker, C. S.: 1990, Asteroid and Comet Flux in the Neighborhood of Earth, Geol. Soc. of Amer. Special Paper, 247, 155–170.

    CrossRef  Google Scholar 

  • Stothers, R. B.: 1984, Mass Extinctions and Missing Matter, Nature, 311, 17.

    CrossRef  Google Scholar 

  • Stothers, R. B.: 1985, Terrestrial Record of the Solar System’s Oscillation About the Galactic Plane, Nature, 317, 338–341.

    CrossRef  Google Scholar 

  • Stothers, R. B.: 1988, Structure of Oort’s Comet Cloud Inferred From Terrestrial Impact Craters, Observatory, 108, 1–9.

    Google Scholar 

  • Stothers, R. B.: 1989, Structure and Dating Errors in the Geologic Time Scale and Periodicity in Mass Extinctions, Geophys. Res. Lett., 16, 119–122.

    CrossRef  Google Scholar 

  • Stothers, R. B.: 1993, Impact Cratering at Geologic Stage Boundaries, Geophys. Res. Lett., 20, 887–890.

    CrossRef  Google Scholar 

  • Toon, O. B., Zahnle, K., Turco, R. P. and Covey, C.: 1994, Environmental Perturbations Caused by Asteroid Impacts, in Hazards due to Asteroids and Comets ( T. Gehrels, Ed.), Univ. of Ariz. P., Tucson, 791–826.

    Google Scholar 

  • Trefil, J. S. and Raup, D. M.: 1987, Numerical Simulations and the Problem of Periodicity in the Cratering Record, Earth and Planet. Sci. Lett., 82, 159–164.

    Google Scholar 

  • Valtonen, M. J., Zheng, J. Q., Matese, J. J. and Whitman, P. G.: 1995, Near-Earth Populations of Bodies Coming From the Oort Cloud and Their Impacts With Planets, Earth, Moon and Planets, 71, 219–223.

    CrossRef  Google Scholar 

  • Yabushita, S.: 1991, A Statistical Test for Periodicity Hypothesis in the Crater Formation Rate, MNRAS, 250, 481–485.

    Google Scholar 

  • Yabushita, S.: 1992, Periodicity in the Crater Formation Rate and Implications for Astronomical Modeling, in Dynamics and Evolution ofMinor Bodies with Galactic and Geological Implications (S. V. M. Clube, S. Yabushita and J. Henrard, Eds.), Kluwer, Dordrecht, 161–178.

    Google Scholar 

  • Yabushita, S.: 1996a, Are Cratering and Probably Related Geological Records Periodic?, Earth, Moon and Planets, 72, 343–356.

    CrossRef  Google Scholar 

  • Yabushita, S.: 1996, Statistical Tests of a Periodicity Hypothesis For Crater Formation Rate-II., MNRAS, 279, 727–732.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Rampino, M.R. (1998). The Galactic Theory of Mass Extinctions: An Update. In: Yabushita, S., Henrard, J. (eds) Dynamics of Comets and Asteroids and Their Role in Earth History. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1321-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1321-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5081-6

  • Online ISBN: 978-94-017-1321-4

  • eBook Packages: Springer Book Archive