Skip to main content

Ericoid mycorrhizal fungi: some new perspectives on old acquaintances

  • Chapter
Book cover Diversity and Integration in Mycorrhizas

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 94))

Abstract

Many ericaceous species colonize as pioneer plants substrates ranging from arid sandy soils to moist mor humus, in association with their mycorrhizal fungi. Thanks to the symbiosis with ericoid mycorrhizal fungi, cricaceous plants are also able to grow in highly polluted environments, where metal ions can reach toxic levels in the soil substrate. For a long time this mycorrhizal type has been regarded as an example of a highly specific interaction between plants and fungi. More recent studies have been challenging this view because some ericoid mycorrhizal endophytes seem also able to colonise plants from very distant taxa. A molecular approach has allowed the investigation of genetic diversity and molecular ecology of ericoid mycorrhizal fungi, and has revealed that ericaceous plants can be very promiscuous, with multiple occupancy of their thin roots. The molecular analysis of sterile morphotypes involved in this symbiosis has also led to deeper understanding of the species diversity of ericoid fungi. Genetic polymorphism of ericoid fungi is wider than previously thought, and often increased by the presence of Group I introns in the nuclear small subunit rDNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abuzinadah R A and Read D J 1989 The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. V. Nitrogen transfer in birch (Betula pendula) grown in association with mycorrhizal and non-mycorrhizal fungi. New Phytol. 112, 61–68.

    Article  CAS  Google Scholar 

  • Arnebrant K, Ek H, Finlay R D and Soderstrom B 1993 Nitrogen translocation between Alnus glutino.sa (L.) Gaertn seedlings inoculated with Frankia sp. and Pinta conforta Doug. ex Loud seedlings connected by a common ectomycorrhizal mycelium. New Phytol. 130, 231–242.

    Article  Google Scholar 

  • Ashford A E, Allaway W G and Reed M L 1996 A novel role for thick-walled epidermal cells in the mycorrhizal hair roots of Lr.sinema ciliation R. Br. and other Epacridaceae. Ann. Bat. 77, 375–382.

    Google Scholar 

  • Bending G D and Read D J 1996 Nitrogen mobilization from protein polyphenol complexes by ericoid and ectomycorrhizal fungi. Soil Biol. Biochem. 28, 1603–1612.

    CAS  Google Scholar 

  • Bending G D and Read D J 1997 Lignin and soluble-phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi. Mycol. Res. 101, 1348–1354.

    Article  CAS  Google Scholar 

  • Berch S M 2001 Molecular diversity and phylogeny of ericoid mycorrhizal fungi. Plant Soil, 244, 55–66.

    Article  Google Scholar 

  • Bergen) R, Perotto S, Girlanda M, Vidano G and Luppi A M 2000 Ericoid mycorrhizal fungi are common root associates of a Mediterranean ectomycorrhizal plant (Quercus ilex). Mol. Ecol. 9, 1639–1650.

    Google Scholar 

  • Bethlenfalvay G J, Reyes-Solis M G. Camel S B and FerreraCerrato M 1991 Nutrient transfer between the root zones of soybean and maize plants connected by a common mycorrhizal mycelium. Physiol. Plant 82, 423– 432.

    Google Scholar 

  • Bonfante P 1980 Occurrence of a Basidiomycetes in living cells of mycorrhizal hair roots of Callum vulgaris. Trans. Br. Mycol. Soc. 75, 320–325.

    Article  Google Scholar 

  • Bonfante P and Gianinazzi-Pearson V 1979 Ultrastructural aspects of endomycorrhiza in the Ericaceae. I. Naturally infected hair roots of Calluna vulgaris L. Hull. New Phytol. 83, 739–744.

    Google Scholar 

  • Bradley R, Burt A J and Read D J 1981 Mycorrhizal infection and resistance to heavy metal toxicity in Callum vulgaris. Nature 292, 335–337.

    Article  CAS  Google Scholar 

  • Bradley R, Burt A J and Read D J 1982 The biology of mycorrhiza in the Ericaceae VIII. The role of the mycorrhizal infection in heavy metal resistance. New Phytol. 91, 197–209.

    Google Scholar 

  • Brand F 1992 Mixed associations of fungi in ectomycorrhizal roots. ht Mycorrhizas in Ecosystems. Eds. D J Read. D H Lewis, A H Fitter and I J Alexander. pp 142–147. CAB International. Wallingford, Oxon, UK.

    Google Scholar 

  • Brownlee C, Duddrige J A, Malibari A and Read D J 1983 The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways for assimilate and water transport. Plant Soil 71, 433–443.

    Article  Google Scholar 

  • Cairney.J W G and Burke R M 1998 Extracellular enzyme activities of the ericoid mycorrhizal endophyte Hvmenoscyphus erica(’ (Read) Korf & Kernan: their likely roles in decomposition of dead plant tissue in soil. Plant Soil 205, 181–192.

    Article  CAS  Google Scholar 

  • Cairney J W G, Sawyer N A., Sharpies J M and Meharg A A 2000 Intraspecific variation in nitrogen source utilisation by isolates of the ericoid mycorrhizal fungus Hyrnenoscyphus crime (Read) Korf & Kernan. Soil Biol. Biochem. 32. 1319–1322.

    Google Scholar 

  • Cech T R 1990 Self-splicing of Group 1 introns. Arum. Rev. Biochem. 59, 543–568.

    Article  CAS  Google Scholar 

  • Chambers S M. Williams P G, Seppelt R D and Cairney J W G 1999 Molecular identification of Hvmeno.rc_sphus sp. from rhizoids of the leafy liverwort Cephaloziella exiliflora (Tayl.I Steph. in Australia and Antarctica. Mycol. Res. 103, 286–288.

    Google Scholar 

  • Chambers S M, I,in G and Cairney J W G 2000 ITS rDNA sequence comparison of ericoid mycorrhizal endophytes from Woollsia puagens. Mycol. Res. 104. 168–174.

    Google Scholar 

  • Clapp J P, Young J P W, Merryweather J W and Fitter A H 1995 Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytol. 130, 259–265.

    Article  Google Scholar 

  • Colpaert JV, Vandenkoornhuyse R, Adriaensen K and Vangronsveld J 2000 Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillus luteu.s. New Phytol. 147, 367–79.

    Article  CAS  Google Scholar 

  • Crayn D M, Kron K A, Gadek P A and Quinn C J 1998 Phylogenetics and evolution of epacrids: a molecular analysis using the plastid gene rhcl, with a reappraisal of the position of Lebetanthus. Austral. J. Bot. 46, 187–200.

    Google Scholar 

  • Denny H J and Ridge 11995 Fungal slime and its role in the mycorrhiza amelioration of zinc toxicity to higher plants. New Phytol. 130.251–257.

    Google Scholar 

  • Douglas G C, Heslin M C and Reid C 1989 Isolation of Oidiodendron mains from Rhododendron and ultrastructural characterization of synthesized mycorrhizas. Can. J. Bot. 67, 2206–2212.

    Google Scholar 

  • Duckett J G and Read D J 1995 Ericoid mycorrhizas and rhizoidascomycete associations in liverworts share the same mycobiont isolation of the partners and resynthesis of the associations in vitro. New Phytol. 129, 439–447.

    Article  Google Scholar 

  • Egger K N and Sigler L 1993 Relatedness of the ericoid endophytes Scvtalidium vaccinii and Hvmenoscyphus ericae inferred from analysis of ribosomal DNA. Mycologia 85, 219–230.

    Article  CAS  Google Scholar 

  • Egger K N, Osmond G and Goodicr J L 1995 Sequence and putative secondary structure of group I intron in the nuclear encoded ribosomal RNA genes of the fungus Hyrnenosc_yphus ericae. Biochim. Biophys. Acta 1261, 275–278.

    Google Scholar 

  • Englander L, Hull R J 1980 Reciprocal transfer of nutrients between ericaceous plants and Clavaria sp. New Phytol. 84. 661–667.

    Article  Google Scholar 

  • Francis R and Read D J 1984 Direct transfer of carbon between plants connected by vesicular-arbuscular mycorrhizal mycelium. Nature 307, 53–56.

    Article  CAS  Google Scholar 

  • Gadd G M 1993 Interactions of fungi with toxic metals. New Phytol. 124, 25–60.

    Article  CAS  Google Scholar 

  • Gargas A P, DePriest T and J W Taylor 1995 Position of multiple insertions in SSU rDNA of lichen-forming fungi. Mol. Biol. Evol. 12, 208–218

    Google Scholar 

  • Genney D R, Alexander I J and Hartley S F, 2000 Exclusion of grass roots from soil organic layers by Calluna: the role of ericoid mycorrhizas. J. Exp. Bot. 51, 1117–1125.

    Google Scholar 

  • Glenn A E. Bacon C W, Price R. and Hanlin R T 1996 Molecular phylogeny of Acremonimn and its taxonomic implications. Mycologia 88, 369–383.

    Article  Google Scholar 

  • Gianinazzi-Pearson V 1996 Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of the symbiosis. Plant Cell 8. 1871–1883.

    PubMed  PubMed Central  Google Scholar 

  • Graves J D, Watkins N K, Fitter A H, Robinson D and Scrimgeour C 1997 Intraspecific transfer of carbon between plants linked by a common mycorrhizal network. Plant Soil 192, 153–159.

    Article  CAS  Google Scholar 

  • Hambleton S and Currah R S 1997 Fungal endophytes from the roots of alpine and boreal Ericaceae. Can. J. Bot. 75. 1570–1581.

    Article  Google Scholar 

  • Hambleton, S, Currah R and Egger K I998a Phylogenetic relationships of ascomycetous root endophytes of the Ericaceae inferred from 18S rDNA sequence analysis. In Abstracts of the Second International Conference on Mycorrhiza. Eds. U Ahonen-Jonnarth, E Dane11, P Fransson, O Ktirén, B Lindahl, I Rangel and R Finlay. pp. 78. Swedish University of Agricultural Sciences, Uppsala.

    Google Scholar 

  • Hambleton S, Egger K N and Currah R S 1998b The genus Oidiodendron: species delimitation and phylogenetic relationships based on nuclear ribosomal DNA analysis. Mycologia 90. 854–869.

    Article  CAS  Google Scholar 

  • Hibbett D S 1996 Phylogenetic evidence for horizontal transmission of Group 1 introns in the nuclear ribosomal DNA of mushroom-forming fungi. Mol. Biol. Evol. 13, 903–917.

    Article  PubMed  CAS  Google Scholar 

  • Holst-Jensen A, Vaage M, Schumacher T and Johansen S 1999 Structural characteristics and possible horizontal transfer of Group I introns betwen closely related plant pathogenic fungi. Mol. Biol. Evol. 16, 1 14–126.

    Google Scholar 

  • Hughes M N and Poole R K 1989 Metals and Microorganisms. Chapman and Hall, London.

    Google Scholar 

  • Hutton B J, Dixon K W and Sivasithamparam K 1994 Ericoid endophytes of Western Australian heaths ( Epacridaceae ). New Phytol. 127, 557–566.

    Google Scholar 

  • Johansen S D, Muscarella E and Vogt V M 1996 Insertion elements in ribosomal DNA. In Ribosomal RNA: Structure, Evolution, Processing and Function in Protein Biosynthesis. Eds. R A Zimmermann and A E Dahlberg. pp. 89–110. CRC Press, Boca Raton, FI..

    Google Scholar 

  • Johansson M 2001 Fungal associations of Danish Calluna vulgaris roots with special reference to ericoid mycorrhiza. Plant Soil 231, 225–232.

    Article  CAS  Google Scholar 

  • Jumpponen A and Trappe J M 1998 Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol. 140, 295–310.

    Article  Google Scholar 

  • Jumpponen A, Mattson K G and Trappe J M 1998 Mycorrhizal functioning of Phialocephala fortinii with Pinus contorta on glacier forefront soil: interactions with soil nitrogen and organic matter. Mycorrhiza 7, 261–265.

    Article  CAS  Google Scholar 

  • Lacourt I, D’Angelo S, Girlanda M, Turnau K, Bonfante P and Perotto S 2000 Genetic polymorphism and metal sensitivity of Oidiodendron mains strains isolated from polluted soils. Ann. Microbiol. 50, 157–66.

    Google Scholar 

  • Lacourt I, Girlanda M, Perotto S, Del Pero M, Zuccon D and Luppi A M 2001 Nuclear ribosomal sequence analysis of Oidiodendron: towards a redefinition of ecologically relevant species. New Phytol. 149, 565–576.

    Article  CAS  Google Scholar 

  • Leake J R and Read D J 1991 Experiments with ericoid myconhiza. In Methods in Microbiology, vol. 23. Eds. J R Norris, D J Read and A K Varma. pp. 435–459. Academic Press, London.

    Google Scholar 

  • Leyval C, Turnau K and Haselwandter K 1997 Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7, 139–153.

    Article  CAS  Google Scholar 

  • Liu G, Chambers S M and Cairney J W G 1998 Molecular diversity of ericoid mycorrhizal endophytes isolated from Woollsia pungens (Cay.) F. Muell. ( Epacridaceae ). New Phytol. 140, 145–153

    Google Scholar 

  • LoBuglio K F, Berbee M L and Taylor J W 1996 Phylogenetic origins of the asexual mycorrhizal symbiont Cenococcum geophilum Fr. and other mycorrhizal fungi among the ascomycetes. Mol. Phylogen. Evol. 6, 287–294.

    Google Scholar 

  • Marschner H 1995 Mineral Nutrition of Higher Plants. Academic Press, London.

    Google Scholar 

  • Martino E, Coisson J D, Lacourt I, Favaron F, Bonfante P and Perotto S 2000a Influence of heavy metals on production and activity of pectinolytic enzymes in ericoid mycorrhizal fungi. Mycol Rcs. 104, 825–833.

    Article  CAS  Google Scholar 

  • Martino E, Turnau K, Girlanda M, Bonfante P. and Perotto S. 2000b Ericoid mycorrhizal fungi from heavy metal polluted soils: their identification and growth in the presence of heavy metals. Mycol. Res. 104, 338–344.

    Google Scholar 

  • McLean C B, Anthony J, Collins R A, Steinke E and Lawrie A C 1998 First synthesis of ericoid mycorrhizae in the Epacridaceae under axenic conditions. New Phytol. 139, 589–593.

    Article  Google Scholar 

  • McLean C B, Cunnington J H and Lawrie A C 1999 Molecular diversity within and between ericoid endophytes from the Ericaceae and Epacridaceae. New Phytol. 144, 351–358.

    Article  CAS  Google Scholar 

  • Monreal M, Berch SM and Berbee M 1999 Molecular diversity of ericoid mycorrhizal fungi. Can. J. Bot. 77, 1580–1594.

    Google Scholar 

  • Morley G F, Sayer J A, Wilkinson S C, Gharieb M M and Gadd G M 1996 Sequestration, mobilization and transformation of metals and metalloids. In Fungi and Environmental Change. Eds. J C Frankland, N Magan and G M Gadd. pp 235–256. University Press, Cambridge.

    Chapter  Google Scholar 

  • Nasholm T and Persson J 2001 Plant acquisition of organic nitrogen in boreal forests. Physic)] Plant 111, 419–426.

    Article  CAS  Google Scholar 

  • Newman E I and Eason W R 1993 Rates of phosphorus transfer within and between ryegrass (Latium perenne) plants. Funet. Ecol. 7, 242–248.

    Article  Google Scholar 

  • Nishida H and Sugiyama J 1995 A common Group I intron between a plant parasitic fungus and its host. Mol. Biol. Evol. 12, 883–886.

    PubMed  CAS  Google Scholar 

  • Nishida H, Tajiri Y and Sugiyama J 1998 Multiple origins of fungal Group I introns located in the same position of nuclear SSU rRNA gene. J. Molec. Evol. 46, 442–448.

    Google Scholar 

  • Pearson V and Read D J. 1973 The biology of mycorrhiza in the Ericaceae. I. The isolation of the endophyte and synthesis of mycorrhizal in aseptic cultures. New Phytol. 72, 371–379.

    Article  Google Scholar 

  • Perotto S, Peretto R, Faccio A, Schubert A, Varma A, and Bonfante P 1995 Ericoid mycorrhizal fungi: cellular and molecular bases of their interactions with the host plant. Can. J. Bot. 73 sup. 1, S557–S568.

    Article  Google Scholar 

  • Perotto S. Actis-Perino E, Perugini J and Bonfante P 1996. Molecular diversity of fungi from ericoid mycorrhizal roots. Mol. Ecol. 5, 123–131.

    Google Scholar 

  • Perotto S, Caisson J D, Perugini J. Cometti V and Bonfante P 1997 Production of pectin-degrading enzyme by ericoid mycorrhizal fungi. New Phytol. 135, 151–162.

    Article  CAS  Google Scholar 

  • Perotto S, Nepote-Fus P, Saietta L, Bandi C and Young J P W 2000 A diverse population of introns in the nuclear ribosomal genes of ericoid myconhizal fungi includes elements with sequence similarity to endonuclease-coding genes. Mol. Biol. Evol. 17, 44–59.

    Google Scholar 

  • Peterson T A W, Mueller C and Englander L 1980 Anatomy and ultrastructure of a Rhododendron root-fungus association. Can. J. Bot. 58, 2421–2433.

    Google Scholar 

  • Ponge J F, Andre J, Zackrisson O, Bernier N, Nilsson M C and Gallet C 1998 The forest regeneration puzzle. BioScience 48, 523–530.

    Article  Google Scholar 

  • Read D J 1991 Mycorrhizas in ecosystems. Experientia 47. 376–390.

    Article  Google Scholar 

  • Read, D J 1996 The structure and function of the ericoid mycorrhizal root. Ann. Bot. 77, 365–374.

    Google Scholar 

  • Read D J 2000 Links between genetic and functional diversity a bridge too far? New Phytol. 145, 363–365.

    Article  Google Scholar 

  • Reed M L 1989 Ericoid mycorrhizas of Styphelieae: intensity of infection and nutrition of the symbionts. Aust. J Plant Physiol. 16, 156–160.

    Google Scholar 

  • Rodwell J S 1991 Mires and Heaths. British Plant Communities, I I. Cambridge University Press, Cambridge.

    Google Scholar 

  • Sharpies J M, Chambers S M, Meharg A A and Cairney J W G 2000a Genetic diversity of root-associated fungal endophytes from Calluna vulgaris at contrasting field sites. New Phytol. 148, 153–162.

    Article  Google Scholar 

  • Sharpies J M, Meharg A A, Chambers S M and Cairney J W G 2000b Symbiotic solution to arsenic contamination. Nature 404, 951–952.

    Google Scholar 

  • Sharpies J M, Meharg A A, Chambers S M and Cairney J W G 2000e Mechanism of arsenate resistance in the ericoid mycorrhizal fungus Hynaenosevphus ericae. Plant Physiol. 124, 1327–1334.

    Article  Google Scholar 

  • Simard S W, Perry D A and Jones M D 1997 Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388, 579–582.

    Article  CAS  Google Scholar 

  • Smith M L, Bruhn J N and Anderson J B 1992 The fungus Armillariella hulbosa is among the largest and oldest living organisms. Nature 356, 428–431.

    Article  Google Scholar 

  • Smith J E, Molina R and Perry D A 1995 Occurrence of ectomycorrhizal on ericaceous and coniferous seedlings grown in soils from the Oregon Coast Range. New Phytol. 129, 73–81.

    Article  Google Scholar 

  • Smith S E and Read D J 1997 Mycorrhizal Symbiosis. 2nd edn. Academic Press, London.

    Google Scholar 

  • Steinke E, Williams P G and Ashford A E 1996 The structure and fungal associated of mycorrhizas in Leucopogon parviflorus (Andr.) Lindl. Ann. Bot. 77, 413–419.

    Google Scholar 

  • Stoyke G K, Egger N and Currah R S 1992 Characterisation of sterile endophytec fungi from the mycorrhizae of subalpine plants. Can. J. Bot. 70, 2009–2016.

    Google Scholar 

  • Straker C J 1996 Ericoid mycorrhiza: ecological and host specificity. Mycorrhiza 6, 215–225.

    Article  Google Scholar 

  • Taylor D L, Bruns T D 1997 Independent specialized invasions of ectomycorrhizal mutualism by two nonphotosynthetic orchids. Proc. Natl. Acad. Sci. USA 94, 4510–4515.

    Google Scholar 

  • tomsett BA 1993 Genetic and molecular biology of metal tolerance in fungi. In Stress tolerance of fungi. Ed. D H Jennings. pp. 6995. Marcel Dekker, New York.

    Google Scholar 

  • Turmel M, Cote V, Otis C, Mercier J P, Gray M W, Lonergan K M and Lemieux C 1995 Evolutionary transfer of ORF-containing Group I introns between different subcellular compartments (chloroplast and mitochondrion). Mol. Biol. Evol. 12, 533–545.

    Google Scholar 

  • Van Buuren M, Maldonado-Mendora I E, Trien A T, Blaylock L A and Harrison M J 1999 Novel genes induced during an arbuscular mycorrhizal (AM) symbiosis between M. truncatula and G. viers forme. Mol. Plant Microbe Interact. 12, 171–181.

    Google Scholar 

  • Varma A and Bonfante P 1994 Utilization of cell wall related carbohydrates by cricoid mycorrhizal endophytes. Symbiosis 16. 301–313.

    CAS  Google Scholar 

  • Voiblet C, Duplessis S, Encelot N and Martin F 2001 Identification of symbiosis-regulated genes in Eucalyptus globulus-Pisolithus tinctorius ectomycorrhiza by differential hybridization of arrayed cDNAs. Plant J. 25, 181–191.

    Article  PubMed  CAS  Google Scholar 

  • Vrâl.stad T 2001 Molecular ecology of root-associated mycorrhizal and non-mycorrhizal ascomycetes. Dissertation submitted to the University of Oslo for the degree Doctor scientiarum N. 146. Unipub forlag, Oslo, Norway.

    Google Scholar 

  • Vrälstad T, Fossheim T and Schumacher T 2000 Piceirhiza bicolorata — the ectomycorrhizal expression of the Hvmenoshrpus ericae aggregate? New Phytol. 145, 549–563.

    Google Scholar 

  • Weissenhorn 1, Leyval C and Berthelin J 1993 Cd-tolerant arbuscular mycon-hizal ( AM) fungi from heavy metal polluted soils. Plant Soil 157, 247–256.

    Google Scholar 

  • Whittingham J and Read D J 1982 Vesicular arbuscular mycorrhiza in natural vegetation systems Ill. Nutrient transfer between plants with mycorrhizal connections. New Phytol. 90, 277–284.

    Article  CAS  Google Scholar 

  • Wilcox H E, Wang C,I K 1987 Ectomycorrhizal and ectoendomycorrhizal associations of Phialophoro Jinlandia with Pimis resinosa, Picea ruhens and Benda alleghaniensis. Can. J. For. Res. 17, 976–990.

    Google Scholar 

  • Xiao G and Berch S M 1996 Diversity and abundance of ericoid mycorrhizal fungi of Gaukheria shallon on forest clearcuts. Can. J. Hot. 74, 337–346.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Perotto, S., Girlanda, M., Martino, E. (2002). Ericoid mycorrhizal fungi: some new perspectives on old acquaintances. In: Smith, S.E., Smith, F.A. (eds) Diversity and Integration in Mycorrhizas. Developments in Plant and Soil Sciences, vol 94. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1284-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1284-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5933-8

  • Online ISBN: 978-94-017-1284-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics