Skip to main content

Mycorrhizas and global environmental change: research at different scales

  • Chapter
Diversity and Integration in Mycorrhizas

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 94))

Abstract

Global environmental change (GEC), in particular rising atmospheric CO2 concentration and temperature, will affect most ecosystems. The varied responses of plants to these aspects of GEC are well documented. As with other key below-ground components of terrestrial ecosystems, the response of the ubiquitous mycorrhizal fungal root symbionts has received limited attention. Most of the research on the effects of GEC on mycorrhizal fungi has been pot-based with a few field (especially monoculture) studies. A major question that arises in all these studies is whether the GEC effects on the mycorrhizal fungi are independent of the effects on their plant hosts. We evaluate the current knowledge on the effects of elevated CO2 and increased temperature on mycorrhizal fungi and focus on the few available field examples. The value of using long-term and large-scale field experiments is emphasised. We conclude that the laboratory evidence to date shows that the effect of elevated CO2 on mycorrhizal fungi is dependent on plant growth and that temperature effects seen in the past might have reflected a similar dependence. Therefore, how temperature directly affects mycorrhizal fungi remains unknown. In natural ecosystems, we predict that GEC effects on mycorrhizal fungal communities will be strongly mediated by the effects on plant communities to the extent that community level interactions will prove to be the key mechanism for determining GEC-induced changes in mycorrhizal fungal communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott L K and Robson A D 1984 The effect of root density, inoculum placement and infectivity of inoculum on the development of vesicular-arbuscular mycorrhizas. New Phytol. 97, 285–299.

    Article  Google Scholar 

  • Bazzaz F A 1990 The response of natural ecosystems to rising global CO2 levels. Annu. Rev. Ecol. Syst. 21, 167–196.

    Article  Google Scholar 

  • Coughlan M J and Nyenzi B S 1991 Climate trends and variability. In Climate Change: Science, Impacts and Policy. Eds. J Jäger and H L Ferguson. pp 71–82. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Curtis P S, Drake B G and Whigham D F 1989 Nitrogen and carbon dynamics in C3 and C4 estuarine marsh plants grown under elevated CO2 in situ. Oecologia 78, 297–301.

    Article  Google Scholar 

  • Daniels Hetrick B A 1984 Ecology of VA mycorrhizal fungi. In Vesicular Arbuscular Mycorrhii.a. Eds. L 1 Cornway, D J Powell and J Bagyaraj. pp 35–55. CRC Press, Boca Raton, Florida, USA.

    Google Scholar 

  • D1az S, Grime J P. Harris J and McPherson E 1993 Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364, 616–617.

    Article  Google Scholar 

  • Dodd J C 1994 Approaches to the study of the extraradical mycelium of arbuscular mycorrhizal fungi. In Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems. Eds. S Gianinazzi and H Schüepp. pp 147–166. Birkhäuser Verlag. Basel, Switzerland.

    Chapter  Google Scholar 

  • Edwards G R, Clark H and Newton P C D 2001 The effects of elevated CO2 on seed production and seedling recruitment in a sheep-grazed pasture. Oecologia 127, 383–394.

    Google Scholar 

  • Fitter A H 1977 Influence of mycorrhizal infection on competition for phosphorus and potassium by two grasses. New Phytol. 79, 119–125.

    Article  CAS  Google Scholar 

  • Fitter A H, Graves J D, Self G K, Brown T K, Bogie D S and Taylor K 1998 Root production, turnover and respiration under two grassland types along an altitudinal gradient: influence of temperature and solar radiation. Oecologia 114, 20–30.

    Article  Google Scholar 

  • Fitter A H, Heinemeyer A and Staddon P L 2000 The impact of elevated CO2 and global climate change on arbuscular mycorrhizas: a mycocentric approach. New Phytol. 147, 179–187.

    Article  CAS  Google Scholar 

  • Furlan V and Fortin J-A 1973 Formation of endomycorrhizae by Endogone calospora on Ailium cepa under three temperature regimes. Nat. Can. 100, 467–477.

    Google Scholar 

  • Gavito M E, Curtis P S. Mikkelsen T N and Jakobsen I 2000 Atmospheric CO2 and mycorrhiza effects on biomass allocation and nutrient uptake of nodulated pea (Pisani sntivum L.) plants. J. Exp. Bot. 51. 1931–1938.

    Google Scholar 

  • Godbold D L and Berntson G M 1997 Elevated atmospheric CO2 concentration changes ectomycorrhizal morphotype assamblages in Betula papyrifera. Tree Physiol. 17, 347–350.

    Article  PubMed  Google Scholar 

  • Godbold D L, Berntson G M and Bazzaz F A 1997 Growth and mycorrhizal colonization of three North American tree species under elevated atmospheric CO2. New Phytol. 137, 433–440.

    Article  CAS  Google Scholar 

  • Gorissen A and Kuyper TH W 2000 Fungal species-specific responses of ectomycorrhizal Scots pine (Pinus sylvestris) to elevated [C0z1. New Phytol. 146. 163–168.

    Article  CAS  Google Scholar 

  • Graham J H and Leonard R T 1982 Interaction of light and soil temperature with phosphorus inhibition of vesicular-arbuscular mycorrhiza formation. New Phytol. 91. 683–690.

    Article  CAS  Google Scholar 

  • Grey W E 1991 Influence of temperature on colonization of spring barleys by vesicular arbuscular mycorrhizal fungi. Plant Soil 137, 181–190.

    Article  Google Scholar 

  • Grime J P, Brown V K, Thompson K, Masters G J, Hillier S H, Clarke I P, Askew A P, Corker D and Kielty J P 2000 The response of two contrasting limestone grasslands to simulated climate change. Science 289, 762–765.

    Article  PubMed  CAS  Google Scholar 

  • Hayman D S 1974 Plant growth responses to vesicular-arbuscular mycorrhiza VI. Effect of light and temperature. New Phytol. 73, 71–80.

    Article  Google Scholar 

  • Helgason T, Fitter A H and Young J P W 1999 Molecular diversity of arbuscular mycorrhizal fungi colonising Hyacinthoides nonscripta (bluebell) in a seminatural woodland. Mol. Ecol. 8, 659–666.

    Google Scholar 

  • Hetrick B A D 1991 Mycorrhizas and root architecture. Experientia 47, 355–362.

    Article  Google Scholar 

  • Hetrick B A D, Wilson G W T and Todd T C 1992 Relationships of mycorrhizal symbiosis, rooting strategy, and phenology among tallgrass prairie forbs. Can. J. Bot. 70, 1521–1528.

    Google Scholar 

  • Hodge A, Campbell C D and Fitter A H 2001 Arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413, 297–298.

    Article  PubMed  CAS  Google Scholar 

  • Jakobsen I, Abbott L K and Robson A D 1992 External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. New Phytol. 120, 371–380.

    Article  CAS  Google Scholar 

  • Jakobsen I and Rosendahl L 1990 Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol. 115, 77–83.

    Article  Google Scholar 

  • Jensen A 1984 Influence of inoculum density of two vesiculararbuscular mycorrhizal fungi and temperature/light intesity on Trifolium repens. Nor. J. Bot. 4, 249–259.

    Article  Google Scholar 

  • Jordan D N, Zitzer S F, Hendrey G R. Lcwin K F, Nagy J, Nowak R S, Smith S D, Coleman J S and Seemann J R 1999 Biotic, abiotic and performance aspects of the Nevada Desert Free-Air CO, Enrichment ( FACE) Facility. Global Change Biol. 5, 659–668.

    Google Scholar 

  • Kerr R A 2001 It’s official: humans are behind most of global warming. Science 291, 566–566.

    Article  PubMed  CAS  Google Scholar 

  • Klironomos J N, Rillig M C and Allen M F 1996 Below-ground microbial and microfaunal responses to Artemisia tridentata grown under elevated atmospheric CO2. Funct. Ecol. 10, 527–534.

    Google Scholar 

  • Klironomos J N, Ursic M, Rillig, M and Allen M F 1998 Interspecific differences in the response of arbuscular mycorrhizal fungi to Artemisia tridentata grown under elevated atmospheric CO2. New Phytol. 138, 599–605.

    Article  Google Scholar 

  • Lewis J D, Thomas R B and Strain B R 1994 Effect of elevated CO2 on mycorrhizal colonization of loblolly pine (Pinus taeda L.) seedlings. Plant Soil 165, 81–88.

    Article  CAS  Google Scholar 

  • Luscher A, Hendrey G R and Nosberger J 1998 Long-term responsiveness to free air CO2 enrichment of functional types, species and genotypes of plants from fertile permanent grassland. Oecologia 113, 37–45.

    Google Scholar 

  • Macilwain C 2000 Global-warming sceptics left out in the cold. Nature 403, 233–233.

    Article  CAS  Google Scholar 

  • Mäder P, Vierheilig H, Streitwolf-Engel R, Boller T, Frey B, Christie P and Wiemken A 2000 Transport of 15N from a soil compartment separated by a polytetrafitioroethylen membran to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytol. 146, 155–161.

    Article  Google Scholar 

  • Merryweather J W and Fitter A H 1995 Phosphorus and carbon budgets: mycorrhizal contribution in Hyacinthoides non-scripta (L.) Chouard ex Rothm. under natural conditions. New Phytol. 129, 619–627.

    Article  Google Scholar 

  • Merryweather J W and Fitter A H 1998 The arbuscular mycorrhizal fungi of Hyacinthoides non-scripta I. Diversity of fungal taxa. New Phytol. 138, 117–129.

    Article  Google Scholar 

  • Miller R M 1987 The ecology of vesicular-arbuscular wycorrhizae in grass-and shrublands. In Ecophysiology of VA Mycombizal Plants. Ed. G R Safir. pp 135–170. CPR Press, Boca Raton, Florida, USA.

    Google Scholar 

  • Miller R M, Reinhardt D R and Jastrow J D 1995 External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture tallgrass prairie communities. Oecologia 103, 17–23.

    Article  Google Scholar 

  • Miller R M and Kling M 2000 The importance of integration and scale in the arbuscular mycorrhizal symbiosis. Plant Soil 226, 295–309.

    Article  CAS  Google Scholar 

  • Monz C A, Hunt H W, Reeves F B and Elliott E T 1994 The response of mycorrhizal colonization to elevated CO2 and climate change in Pascopyron smithii and Bouteloua gracili.s. Plant Soil 165, 75–80.

    Article  CAS  Google Scholar 

  • Newton P C D, Bell C C and Clark H 1996 Carbon dioxide emissions from mineral springs in Northland and the potential of these sites for studying the effects of elevated carbon dioxide on pastures. New Zealand J. Agric. Res. 39, 33–40.

    Google Scholar 

  • Poorter H 1993 Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Vegetatio 104 /105, 77–97.

    Article  Google Scholar 

  • Prior S A, Rogers H H, Runion G B and Hendrey G R 1994 Free-air CO2 enrichment of cotton: vertical and lateral root distribution patterns. Plant Soil 165, 33–44.

    Article  CAS  Google Scholar 

  • Raschi A, Miglietta F, Tognetti R and van Gardingen P R 1997 Plant Responses to Elevated CO2: Evidence from Natural Springs. Cambridge University Press, Cambridge, UK. 286 pp.

    Book  Google Scholar 

  • Rillig M C and Allen M F 1999 What is the role of arbuscular mycorrhizal fungi in plant-to-ecosystem responses to elevated atmospheric CO2? Mycorrhiza 9, 1–8.

    Article  Google Scholar 

  • Rillig M C, Allen M F, Klironomos J N, Chiariello N R and Field C B 1998 Plant species-specific changes in root-inhabiting fungi in a California annual grassland: responses to elevated CO2 and nutrients. Oecologia 113, 252–259.

    Article  Google Scholar 

  • Rillig M C, Field C B and Allen M F I999a Fungal root colonization responses in natural grasslands after long-term exposure to elevated atmospheric CO2. Global Change Biol. 5. 577–585.

    Google Scholar 

  • Rillig M C, Field C B and Allen M F 1999b Soil biota responses to long-term atmospheric CO2 enrichment in two California annual grasslands. Oecologia 119, 572–577.

    Article  Google Scholar 

  • Rillig M C, Hernandez G Y and Newton P C D 2000 Arbuscular mycorrhizae respond to elevated atmospheric CO2 after long-term exposure: evidence from a CO2sprang in New Zealand supports the resource balance model. Ecol. Letters 3, 475–478.

    Google Scholar 

  • Rillig M C, Wright S F, Kimball B A, Pinter P J, Wall G W, Ottman M J and Leavitt S W 2001 Elevated carbon dioxide and irrigation effects on water stable aggregates in a Sorghum field: a possible role for arbuscular mycorrhizal fungi. Glohal Change Biol. 7, 333–337.

    Article  Google Scholar 

  • Rogers H H, Prior S A, Runion G B and Mitchell R J 1996 Root to shoot ratio of crops as influenced by CO2. Plant Soil 187, 229–248.

    Article  CAS  Google Scholar 

  • Runion G B, Curl E A, Rogers H H, Backman P A, RodrtguezKâbana R and Helms B E 1994 Effects of free-air CO7 enrichment on microbial populations in the rhizosphere and phyllosphere of cotton. Agric. For. Meteorol. 70, 1 17–130.

    Google Scholar 

  • Rygiewicz P T, Kendall J M and Tuininga A R 2000 Morpho-type community structure of ectomycorrhizas on Douglas fir (Pseudotsuga menziesü Mirb. Franco) seedlings grown under elevated atmospheric CO2 and temperature. Oecologia 124, 299–308.

    Article  Google Scholar 

  • Schenk N C, Graham S O and Green N E 1975 Temperature and light effect on contamination and spore germination of vesiculararbuscular mycorrhizal fungi. Mycologia 67, 1189–1192.

    Article  Google Scholar 

  • Schlesinger W H and Lichter J 2001 Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature 411, 466–469.

    Article  PubMed  CAS  Google Scholar 

  • Schweiger P and Jakobsen 12000 Laboratory and field methods for measurement of hyphal uptake of nutrients in soil. Plant Soil 226. 237–244.

    Google Scholar 

  • Smith S E and Bowen G D 1979 Soil temperature, mycorrhizal infection and nodulation of Medicago truncatula and Trifolium subterranean!. Soil Biol. Biochem. 11, 469–473.

    Google Scholar 

  • Smith S E and Read D J 1997 Mycorrhizal Symbiosis. Academic Press, London, UK. 605 pp.

    Google Scholar 

  • Staddon P L and Fitter A H 1998 Does elevated atmospheric carbon dioxide affect arbuscular mycorrhizas? TREE 13, 455–458.

    PubMed  CAS  Google Scholar 

  • Staddon P L, Filter A H and Graves J D 1999 Effect of elevated atmospheric CO2 on mycorrhizal colonization, external mycorrhizal hyphal production and phosphorus inflow in Plantago lanceolata and Trifblium repens in association with the arbuscular mycorrhizal fungus Glomu.s mosseae. Global Change Biol. 5, 347–358.

    Article  Google Scholar 

  • Syvertsen J P and Graham J H 1999 Phosphorus supply and arbuscular mycorrhizas increase growth and net gas exchange responses of two Citrus spp. grown at elevated [CO2]. Plant Soil 208. 209–219.

    Article  CAS  Google Scholar 

  • Tinker P B H 1975 Effects of vesicular-arhuscular mycorrhizas on higher plants. In Symposium of the Society of Experimental Biology. Eds. D H Jennings and D L Lee. Vol 29, 325–349. Cambridge Press, New York, USA.

    Google Scholar 

  • Tommcrup I C 1983 Temperature relations of spore germination and hyphal growth of vesicular-arbuscular mycorrhizal fungi in soil. Trans. Brit. Mycol. Soc. 81, 381–387.

    Article  Google Scholar 

  • Treseder K K and Allen M F 2000 Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol. 147, 189–200.

    Article  CAS  Google Scholar 

  • Van der Heijden M G A, Klironomos.1 N, Ursic M. Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A and Sanders I R 1998 Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72.

    Article  Google Scholar 

  • Van Gardingen P R, Grace J. Harkness D D, Miglietta F and Raschi A 1995 Carbon-dioxide emissions at an Italian mineral spring - measurements of average COs concentration and air-temperature. Agric. For. Meteorol. 73. 17–27.

    Google Scholar 

  • Wyman R L 1991 Global Climate Change and Life on Earth. Chapman and Hall. New York. USA. 282 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Staddon, P.L., Heinemeyer, A., Fitter, A.H. (2002). Mycorrhizas and global environmental change: research at different scales. In: Smith, S.E., Smith, F.A. (eds) Diversity and Integration in Mycorrhizas. Developments in Plant and Soil Sciences, vol 94. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1284-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1284-2_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5933-8

  • Online ISBN: 978-94-017-1284-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics