Skip to main content

The Turbulent Reacting Shear Layer: DNS and LES

  • Chapter
Direct and Large-Eddy Simulation IV

Part of the book series: ERCOFTAC Series ((ERCO,volume 8))

  • 729 Accesses

Abstract

Direct numerical simulations (DNS) of a reacting shear layer with large heat release characteristic of hydrocarbon combustion are performed. It is found that strong heat release leads to substantial modifications in the shear layer growth rate as well as turbulence statistics. Unlike DNS, the large eddy simulation (LES) approach may be computationally viable even with multi-step chemical mechanisms including finite rate kinetics. A recent subgrid model based on moment-based reconstruction is evaluated in a priori tests and found to give good predictions of the Arrhenius reaction rate term.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. W. Cook and J. J. Riley. Phys. of Fluids, (6): 2868–2870, 1994.

    Google Scholar 

  2. A. W. Cook, J. J. Riley, and G. Kosaly. Combust. Flame, (109): 332–341, 1997.

    Google Scholar 

  3. J.W. Deardoff, J. Comp. Phys., 7, 120–133 (1971).

    Article  MATH  Google Scholar 

  4. B. J. Geurts. Phys. of Fluids, (9): 3585–3587, 1997.

    Google Scholar 

  5. Hermanson, J. C. and Dimotakis, P. E., 1989, J. Fluid Mech., 199, 333–375.

    Article  Google Scholar 

  6. McMurtry, P. A., Riley, J. J., and Metcalfe, R. W., 1989, J. Fluid Mech., 199, 297–332.

    Article  Google Scholar 

  7. Miller, M. F., Bowman, C. T., and Mungal, M. G., 1998, J. Fluid Mech., 356, 25–64.

    Article  Google Scholar 

  8. Miller, R. S., Madnia, C. K., Givi, P., 1994, Combust. Sci. and Tech., 1994, 99, 1–36.

    Article  Google Scholar 

  9. Mungal, M. G., and Dimotakis, P. E, 1984, J. Fluid Mech., 148, 349–382.

    Article  Google Scholar 

  10. Pantano, C., 2000, Ph. D. thesis,UC San Diego.

    Google Scholar 

  11. Pantano, C., and Sarkar, S., 2001, J. Fluid Mech.,in press.

    Google Scholar 

  12. C. Pantano and S. Sarkar, Phys. Fluids,in press (2001).

    Google Scholar 

  13. S.B. Pope, Turbulent Flows. Cambridge University Press, 2000.

    Google Scholar 

  14. S. Stolz and N.A. Adams (11): 1699–1701, 1999.

    Google Scholar 

  15. Wallace, A. K., 1981, Ph. D. thesis,University of Adelaide.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sarkar, S., Pantano, C. (2001). The Turbulent Reacting Shear Layer: DNS and LES. In: Geurts, B.J., Friedrich, R., Métais, O. (eds) Direct and Large-Eddy Simulation IV. ERCOFTAC Series, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1263-7_47

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1263-7_47

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5893-5

  • Online ISBN: 978-94-017-1263-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics