Skip to main content

DNS of Turbulent Supersonic Channel Flow

Effects of Compressibility and Wall Permeability

  • Chapter
Direct and Large-Eddy Simulation IV

Part of the book series: ERCOFTAC Series ((ERCO,volume 8))

  • 733 Accesses

Abstract

Direct numerical simulations are performed in nominally fully developed channel flow at global Mach and Reynolds numbers of 1.5 and 3000. A pressure — velocity — entropy form of the compressible Navier — Stokes equations is integrated using a fifth order compact upwind scheme for the Euler part, a fourth order Padé scheme for the viscous terms and a third — order low — storage Runge — Kutta time integration method. The work aims at increasing the insight into effects of compressibility. To this end the nature of fluctuating variables is investigated using scatter plots, while the structural effects of compressibility are analysed based on the Reynolds stress budgets and comparisons with their incompressible counterparts. DNS data of turbulent supersonic channel flow along permeable walls at M = 1.5 and Re = 3000 are used to analyze in which way wall permeability modifies the turbulence structure of the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, N. A. and Shariff, K. (1996). A high-Resolution Hybrid Compact-ENO Scheme for Shock-Turbulence Interaction Problems. J. Comp. Phys., Vol. 127, pp. 27–51.

    Article  MathSciNet  MATH  Google Scholar 

  • Coleman, G. N., Kim, J. and Moser, R. D. (1995). “A numerical study of turbulent supersonic isothermal-wall channel flow”, J. Fluid Mech., Vol. 305, pp. 159–183.

    Article  MATH  Google Scholar 

  • Huang, P. G., Coleman, G. N. and Bradshaw, P. (1995). “Compressible turbulent channel flows: DNS results and modelling”, J. Fluid Mech., Vol. 305, pp. 185–218.

    Article  MATH  Google Scholar 

  • Kim, J., Moin, P. and Moser, R. (1987). “Turbulence statistics in fully developed channel flow at low Reynolds number”, J. Fluid Mech., Vol. 177, pp. 133–166.

    Article  MATH  Google Scholar 

  • Kovasznay, L. S. G. (1953). Turbulence in supersonic flow. Journal of the Aeronautical Sciences, Vol. 20, pp. 657–682.

    MATH  Google Scholar 

  • Lechner, R. (2000). Kompressible turbulente Kanalströmung. PH. D. thesis, Technische Universität München.

    Google Scholar 

  • Lechner, R., Sesterhenn, J. and Friedrich, R. (2001). Turbulent supersonic channel flow. Journal of Turbulence, 2, pp. 1–25.

    Article  MathSciNet  Google Scholar 

  • Lele, S. K. (1992). Compact Finite Difference Schemes with Spectral-like Resolution. J. Comp. Phys., Vol. 103, pp. 16–42.

    Article  MathSciNet  MATH  Google Scholar 

  • Moser, R. D., Kim, J. and Mansour, N. N. (1999). Direct numerical simulation of turbulent channel flow up to Re, = 590. Physics of Fluids, Vol. 11, No. 4, pp. 943–945.

    Article  MATH  Google Scholar 

  • Poinsot, T. J. and Lele, S. K. (1992). Boundary conditions for direct simulations of compressible viscous flows. J. Comp. Physics., vol. 101, pp. 104–129.

    Article  MathSciNet  MATH  Google Scholar 

  • Sesterhenn, J. (2001). A characteristic-type formulation of the Navier-Stokes equa- tions for high order upwind schemes. Computers Fluids, Vol. 30, No. 1, pp. 37–67.

    Article  MATH  Google Scholar 

  • Wagner, C. and Friedrich, R. (2000). DNS of turbulent flow along passively permeable walls. Int. J. Heat Fluid Flow, Vol. 21, pp. 489–498.

    Article  Google Scholar 

  • Williamson, J. H. (1980). Low-Storage Runge-Kutta Schemes. J. Comp. Phys., Vol. 35, pp. 48–56.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Friedrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lechner, R., Sesterhenn, J., Friedrich, R. (2001). DNS of Turbulent Supersonic Channel Flow. In: Geurts, B.J., Friedrich, R., Métais, O. (eds) Direct and Large-Eddy Simulation IV. ERCOFTAC Series, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1263-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1263-7_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5893-5

  • Online ISBN: 978-94-017-1263-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics