Skip to main content

Algorithms

  • Chapter
  • 205 Accesses

Part of the Nijhoff International Philosophy Series book series (MIPS,volume 9)

Abstract

The word ‘algorithm’ (Latin “algorithmus”) has been derived as a combination of the word “algorism,” which in the middle ages denoted the art of computing using Arabic numerals, and the Greek word “arithmós” (number). The word “algorism” itself comes from the name of a Persian mathematician Mohammed ibn-Musa al-Khwarizmi (from Khwarizm) who, in the ninth century, described how to perform the four arithmetic operations in the decimal number system.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-017-1253-8_3
  • Chapter length: 5 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-94-017-1253-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blum, M.: A machine-independent theory of the complexity of recursive functions. J. ACM 14: 322–336, 1967.

    CrossRef  Google Scholar 

  • Hartmanis, J., Hoperoft, J.E.: An overview of the theory of computational complexity. J. ACM 18: 444–475, 1971.

    CrossRef  Google Scholar 

  • Knuth, D.E.: The art of computer programming,3 vols. Reading, Mass.: Addison-Wesley, 1968–1973.

    Google Scholar 

  • Malcev, A.I.: Algorithms and recursive functions [in Russian]. Moscow: Nauka, 1965.

    Google Scholar 

  • Markov, A.A.: The theory of algorithms [in Russian]. Trudy Mat. Inst. Steklov 38: 176–189, 1951. (English translation: Washington, D.C.: National Science Foundation, 1961.)

    Google Scholar 

  • Minsky, M.: Computation: finite and infinite machines, Englewood Cliffs, N.J.: Prentice-Hall, 1967.

    Google Scholar 

  • Post, E.L.: Finite combinatory processes: formulation. J. Symbolic Logic 1: 103–105, 1936.

    CrossRef  Google Scholar 

  • Rogers, H.: Theory of recursive functions and effective computability. New York: McGraw-Hill, 1967.

    Google Scholar 

  • Turing, A.M.: On computable numbers with an application to the Entscheidungsproblem, Proc. London Math. Soc. 42: 230–265, 1937.

    CrossRef  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1981 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dembiński, P. (1981). Algorithms. In: Marciszewski, W. (eds) Dictionary of Logic as Applied in the Study of Language. Nijhoff International Philosophy Series, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1253-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1253-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8257-2

  • Online ISBN: 978-94-017-1253-8

  • eBook Packages: Springer Book Archive