Abstract
The fruit provides a proper environment for seed production, protection and dispersal. Fruit set and development usually takes place only after pollination and fertilization, and fertilized fruits contain seeds. The development of fruits without pollination and fertilization is called parthenocarpy. Parthenocarpic fruits are seedless. Therefore, seedless fruits represent the uncoupling of the genetic programme for fruit development from the one ensuring seed production and, consequently, its evolutionary function. Parthenocarpy is interesting also for applied reasons. It offers the possibility of improving fruit quality and productivity in many crop plants grown for their fruits. Environmental conditions adverse for pollen production, germination and fertilization negatively affect fruit production and quality. Thus, parthenocarpy is considered the most efficient way to produce fruits under environmental conditions adverse for pollination and/or fertilization. Moreover, in some crops the absence of seeds can improve fruit quality (e.g., eggplant), while in other plant species (e.g., Actinidia) parthenocarpy might also improve productivity because pollinator plants are no longer needed. Lastly, parthenocarpy allows early fruit production and harvest. Thus, parthenocarpy represents a tool to rationalize and improve fruit quality and production in the plant species grown for their fruits.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Acciarri, N., Ferrari, V., Vitelli, G., Ficcadenti, N., Pandolfini, T., Spena, A. and Rotino, G.L. (2000) Effetto della partenocarpia in ibridi di pomodoro geneticamente modificati, Inf. Agrario 4, 117–121.
Bartel, B. and Fink, G.R. (1995) ILR1, an amidohydrolase that releases active indole-3-acetic acid from conjugates, Science 268, 1745–1748.
Barg, R. and Salts,Y. (1996) Method for the induction of genetic parthenocarpy in plants, Patent App. N° 1L19960117139; Patent N° W09730165.
Bouquet, A. and Danglot, Y. (1996) Inheritance of seedlessness in grapevine (Vitis viniftra L.), Vitis 35, 35–42.
Carmi, N., Salts, N., Shabtai, S., Pilowsky, M., Barg, R. and Dedicova, B. (1997) Transgenic parthenocarpy due to specific over-sensitization of ovary to auxin, Acta Hortic. 447, 579–581.
Donzella., G., Spena, A. and Rotino, G.L. (2000) Transgenic parthenocarpic eggplants: superior germplasm for increased winter production, MoL Breed. 6, 79–86.
Ficcadenti, N., Sestili, S., Pandolfini, T., Cirillo, C., Rotino, G.L. and Spena, A. (1999) Genetic engineering of parthenocarpic fruit development in tomato, Mol. Breed. 5, 463–470.
Fitting, H. (1909) Die beeinflussung der Orchideenbluten durch die Bestaubung und durch andere Umstande, Z. Bot. 1, 1–86.
Galitski, T., Saldanha, A.J., Styles, C.A., Lander, E.S. and Fink, G.R. (1999) Ploidy regulation of gene expression, Science 285, 251–254.
Gillapsy, G., Ben-David, H. and Grulssem,W. (1993) Fruits: A developmental perspective, Plant Cell 5, 1439–1451.
Glass, N.L. and Kosuge, T. (1988) Role of indoleacetic acid-lysine synthase in regulation of indoleacetic acid pool size and virulence of Pseudomonas syringae subsp. Savastanoi, Bacteriol. 170, 2367–2373.
Griggs, W.H. and Iwakiri, B.T. (1954) Pollination and parthenocarpy in the production of “Bartlett” pears in California, Hilgardia 22, 643–678.
Grossniklaus, U. and Vielle-Calzada, J.P. (1998) Seed specific polycomb group gene and methods of use for same. Patent Application Number USI9980061769. PN W09953083.
Grossniklaus, U., Vielle-Calzada, J.P., Hoeppner, M.A. and Gagliano, W.B. (1998) Maternal control of embryogenesis by MEDEA, a polycomb group gene of Arabidopsis, Science 280, 446–450.
Gustafson, F.G. (1939a) The cause of natural parthenocarpy, Amer. J Bot. 26, 135–138. Gustafson, F.G. (1939b) Auxin distribution in fruits and its significance in fruit development, Amer. J Bot. 26, 189–194.
Gustafson, F.G. (1942) Parthenocarpy: Natural and artificial, Bot Rev. 8, 599–654.
Hagen, G., Martin, G., Li, Y. and Guilfoyle, T.J. (1991) Auxin-induced expression of the soybean GH3 promoter in transgenic tobacco plants, Plant Mol. Biol. 17, 567–579.
Hennart, J.W. (1996) Sélection de l’aubergine, PHM Rev. Hortic. 374, 37–40.
Kihara, H. (1951) Triploid watermelon, Proc Amer. Soc. Hortic. Sci. 58, 217–230.
Kim, I.S., Okubo, H. and Fujieda, K., (1992) Endogenous level of IAA in relation to parthenocarpy in cucumber (Cucumis sativus L.), Sci. Hortic. 52, 1–8.
Kosuge,T., Heskett, M.G. and Wilson, E.E. (1966) Microbial synthesis and degradation of the indole-3-acetic acid, J. BioL Chem. 241, 3738–3744.
Kulkarni, V. and Rameshwar, A. (1978) Natural and gibberellic acid induced parthenocarpy in mango: cv. Thambva, Curr. Sci. 47, 353–355.
Ledbetter, C.A. and Burgos L. (1994) Inheritance of stenospermocarpic seedlessness in Vitis vinifera L., J Hered. 85, 157–160.
Lee, T.H., Sugiyama, A., Takeno, K., Ohno, H. and Yamaki, S. (1997) Changes in content of indole-3-acetic acid and in activities of sucrose metabolizing enzyme during fruit growth in eggplant (Solanum melongena L.), J Plant Physiol. 150, 292–296.
Li, Y. (1997) Transgenic seedless fruit and methods, Patent Appl.N° US1997060045725; W09849888A I.
Lin, B.-Y. (1984) Ploidy barrier to endosperm development in maize, Genetics 107, 103–115.
Lin, S., George W.L. and Splittstoesser W.F. (1984) Expression and inheritance of partenocarpy in “Severianin” tomato, J. Hered. 75, 62–66.
Liu, Z.B., Ulmasov, T., Shi, X., Hagen, G. and Guilfoyle, T.J. (1994) Soybean GH3 promoter contains multiple auxin-inducible elements, Plant Cell 6, 645–657.
Lukyanenko, A.N. (1991) Parthenocarpy in tomato, in G. Kalloo (ed.), Genetic Improvement of Tomato. Monograph on Theoretical and Applied Genetics, Springer Verlag, Berlin, pp. 167–175.
Ma, H., Yanofsky, M.F. and Meyerowitz, EM (1991) AGL1–AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes, Genes Dev. 5, 484495.
Mapelli, S., Bricchi, D., Cantoni, M. and Soressi, G.P. (1994) Gene pat-2 e livelli di fitoregolatori endogeni, allegagione e caratteristiche produttive in un ibrido di pomodoro, Atti II Giornate Scientifiche SOI, S. Benedetto del Tronto, 22–24 Giugno, pp. 213–214.
Mazzucato, A., Taddei, A. R. and Soressi, G. P. (1998) The parthenocarpic fruit (pat) mutant of tomato (Lycopersicon esculentum Mill.) sets seedless fruits and has aberrant anther and ovule development, Development 125, 107–114.
Nitsch, J.P. (1950) Growth and morphogenesis of the strawberry as related to auxin, Amer. J. Bot. 37, 211–215.
Nitsch, J.P. (1970) Hormonal factors in growth and development, in. A.C. Hulme (ed.), The Biochemistry of Fruits and their Products. Vol. II, Academic Press, London, pp. 427–472.
Nyeki, J., Soltesz, M. and Ivancsics, J. (1998) Natural tendency to parthenocarpy of pear. Acta Hortic. 475, 367–377.
Ortiz, R. and Vuylsteke, D. (1995) Effect of the parthenocarpy gene P1 and ploidy on fruit and bunch traits of plantain-banana hybrids, Heredity 75, 460–465.
Paddon, C.J. and Hartley, R.W. (1987) Expression of Bacillus amyloliquefaciens extracellular ribonuclease (barnase) in Escherichia coli following an inactivating mutation, Gene 53, 11–9.
Philouze, J. (1983) Parthenocarpie naturelle chez la tomate, I. Rev. Bibliograph. Agro. 3, 611620.
Philouze, J. (1985) Parthenocarpie naturelle chez la tomate. II. Etude d’une collection variètale, Agronomie 5, 47–54.
Philouze, J., Buret, M., Duprat, F., Nicolas-Grotte and Nicolas, J. (1988) Caractèristiques agronomiques et physico-chimiques de lignèes de tomate isogèniques, sauf pou gène pat-2 de parthènocarpie, dans trois types varietaux, en cultures de printemps, sous serre plastique très peu chauffèe, Agronomie 8, 817–828.
Pike, L.M. and Peterson, C.E. (1969) Inheritance of parthenocarpy in the cucumber (Cucumis sativus L.), Euphytica 18, 101–105.
Robinson, R.W., Cantliffe, D.J. and Shannon, S. (1971) Morphactin induced parthenocarpy in the cucumber, Science 171, 1251–1252.
Rotino, G.L., Sommer, H., Saedler, H. and Spena, A. (1996) Methods for producing parthenocarpic or female sterile transgenic plants and methods for enhancing fruit setting and development, Priority N° EPO 96120645.5.
Rotino, G.L., Perri, E., Zottini, M., Sommer, H. and Spena, A. (1997) Genetic engineering of parthenocarpic plants, Nature Biotech. 15, 1398–1401.
Salts, Y.R., Wachs, R., Gruissem, W. and Barg, R. (1991) Sequence coding for a novel proline-rich protein preferentially expressed in young tomato fruit, Plant Mol. Biol. 17, 149–150.
Savidge, B., Rounsley, S.D. and Yanofsky, M.F. (1995) Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes, Plant Cell 7, 721–733.
Schwabe, W.W. and Mills, J.J. (1981) Hormones and parthenocarpic fruit set: A literature survey, Hortic. Abstr. 51, 661–698.
Shozo, M. and Keita, S. (1997) Creation of seedless fruit, Patent AppL N° JPI9970279331; PN: JP I 1103705.
Szectman, A.D., Saltz, Y., Carmi, N., Shabtai, S., Pilowsky, M. and Barg, R. (1997) Seedless fruit setting in response to NAM treatment of transgenic tomato expressing the iaaH gene specifically in the ovary, Acta Hortic. 447, 597–598.
Tomes,D.T., Miller, P.D. and Bensen, R.I. (1996a) Transgenic methods and compositions for producing parthenocarpic fruits and vegetables, US Patent Appt N° 641479. PN:US5877400.
Tomes, D.T., Huang, B. and Miller, P.D. (1996b) Genetic constructs and methods for producing fruits with very little or diminished seed, US Patent AppL N° 636283. PN: US5773697.
Tobutt, K.R. (1994) Combining apetalous parthenocarpy with columnar growth habit in apple, Euphytica 77, 51–54.
Tsao, T. (1980) Growth substances: Role in fertilization and sex expression, in F. Skoog (ed.), Plant Growth Substances, Spring-Verlag, N.Y., pp. 345–348.
Vardy, E., Lapushner, D., Genizi, A. and Hewitt, J. (1989a). Genetics of parthenocarpy in tomato under a low temperature regime: I. Line RP 75/59, Euphytica 41, 1–8.
Vardy, E., Lapushner, D., Genizi, A. and Hewitt, J. (1989b). Genetics of parthenocarpy in tomato under a low temperature regime: II. Cultivar “Severianin”, Euphytica 41, 9–15.
Weiss, J., Nerd, A. and Mirzahi, Y. (1993) Vegetative parthenocarpy in the cactus pear Opuntia ficus-indica (1.)Mill., Ann. Bot. 72: 521–526.
Yamada, T., Palm, C.J., Brooks, B. and Kosuge, T. (1985) Nucleotide sequence of the Pseudomonas savastanoi indoleacetic acid genes show homology with Agrobacterium tumefaciens T-DNA, Proc. Natl. Acad. Sci. USA 82, 6522–6526.
Yasuda, S. (1934) Parthenocarpy caused by the stimulus of pollination in some plants of Solanaceae, Agric. Hortic. 9, 647–656.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Spena, A., Rotino, G.L. (2001). Parthenocarpy. In: Bhojwani, S.S., Soh, WY. (eds) Current Trends in the Embryology of Angiosperms. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1203-3_17
Download citation
DOI: https://doi.org/10.1007/978-94-017-1203-3_17
Publisher Name: Springer, Dordrecht
Print ISBN: 978-90-481-5679-5
Online ISBN: 978-94-017-1203-3
eBook Packages: Springer Book Archive