Skip to main content

Abstract

In the early part of the 19th century William Rowan Hamilton discovered a principle which can be generalized to encompass many areas of physics, engineering and applied mathematics. Hamilton’s principle roughly states that the evolution in time of a dynamic system takes place in such a manner that integral of the difference between the kinetic and potential energies for the system is stationary. If the ‘action’ integral is free of the time variable, the sum of the kinetic and potential energies, the Hamiltonian, is constant—the conservation law of the total energy.

The author wishes to express his appreciation to Paul A. Samuelson, William A. Barnett, Hal R. Varian, Gilbert Suzawa, Takayuki Nôno, Fumitake Mimura, and Shigeru Maeda for their helpful comments on an earlier version of this chaper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bessel-Hagen, E. (1921). Über die Erhaltungssätze der Elektrodynamik. Math. Ann., 84, 258–276.

    Article  Google Scholar 

  • Caton, C. and Shell, K. (1971). An exercise in the theory of heterogeneous capital accumulation. Review of Economic Studies, 32, 233–240.

    Google Scholar 

  • Gelfand, I. M and Fomin, S. V. (1963). Calculus of variations. Englewood Cliffs, NJ: Prentice-Hall, translated from the Russian by R. A. Silverman.

    Google Scholar 

  • Kataoka, H. (1983). On the local conservation laws in the von Neumann model. In R. Sato and M. J. Beckmann (eds.), Technology, organization and economic structure: Lecture notes in economics and mathematical systems. Vol. 210, 253–260.

    Google Scholar 

  • Klein, F. (1918). Über die Differentialgesetze für die Erhaltung von Impuls und Energie in derEinsteinschen Gravitationstheorie, Nachr. Akad. Wiss. Göttingen, Math-Phys. Kl. II, 171–189.

    Google Scholar 

  • Kemp, M. C. and Long, N. V. (1982). On the evaluation of social income in a dynamic economy. In G. R. Feiwel (ed.), Samuelson and neoclassical economics. Boston: Kluwer-Nijhoff.

    Google Scholar 

  • Lenard. T. M. (1972). Aggregate policy controls and optimal growth: Theory and applications to the U.S. economy. Providence, RI: Brown University (PhD dissertation).

    Google Scholar 

  • Lie, S. (1891). Vorlesungen über Differentialgleichungen, mit bekannten infinitesimalen Transformationen. Edited by G. Scheffers, Leipzig: Teubner. Reprinted ( 1967 ) New York: Chelsea.

    Google Scholar 

  • Liviatan, N. and Samuelson, P. A. (1969). Notes on turnpikes: Stable and unstable. Journal of Economic Theory, 1, 454–475.

    Article  Google Scholar 

  • Logan, J. D. (1977). Invariant variational principles. Mathematics in science and engineering. Vol. 138. New York: Academic Press.

    Google Scholar 

  • Lovelock D. and Rund, H. (1975). Tensors, differential forms and variational principles. New York: Wiley.

    Google Scholar 

  • Moser, J. (1979). Hidden symmetries in dynamical systems. American Scientists, 67, 689–695.

    Google Scholar 

  • Noether, E. (1918). Invariante Variationsprobleme, Nachr. Akad. Wiss. Göttingen, Math-Phys. Kl. II, 235–257. Translated by M. A. Tavel (1971). Invariant variation problems. Transport Theory and Statistical Physics, 1, 186–207.

    Article  Google Scholar 

  • Nôno, T. (1968). On the symmetry groups of simple materials: applications of the theory of Lie groups. J. Math. Anal. Appl., 24, 110–135.

    Article  Google Scholar 

  • Nôno, T. and Mimura, F. (1975/1976/1977/1978). Dynamic symmetries I/III/IV/ V. Bulletin of Fukuoka University of Education, 25/26/27/28.

    Google Scholar 

  • Ramsey, F. (1928). A mathematical theory of saving. Economic Journal, 38, 543–559.

    Article  Google Scholar 

  • Rund, H. (1966). The Hamilton Jacobi theory in the calculus of variations. Princeton, NJ: Van Nostrand—Reinhold.

    Google Scholar 

  • Sagan, H. (1969). Introduction to the calculus of variations. New York: McGraw-Hill.

    Google Scholar 

  • Sakakibara, E. (1970). Dynamic optimization and economic policy. American Economic Review, 60.

    Google Scholar 

  • Samuelson, P. A. (1970a). Law of conservation of the capital-output ratio: Proceedings of the National Academy of Sciences. Applied Mathematical Science, 67, 1477–1479.

    Google Scholar 

  • Samuelson, P. A. (1970b). To conservation laws in theoreticl economics. Cambridge, MA: M.I.T. Department of Economics mimeo.

    Google Scholar 

  • Samuelson, P. A. (1972). The general saddlepoint property of optimal-control motions. Journal of Economic Theory, 5, 102–120.

    Article  Google Scholar 

  • Samuelson, P.A. (1976). Speeding up of time with age in recognition of life as fleeting. In A.M. Tang et al. (eds.) Evolution, welfare, and time in economics: Essays in honor of Nicholas Georgescu-Roegen. Lexington, MA: Lexington/ Heath Books.

    Google Scholar 

  • Samuelson, P.A. (1982). Variations on capital-output conservation laws. Cambrige, MA: M.I.T. mimeo.

    Google Scholar 

  • Sato, R. (1981). Theory of technical change and economic invariance: Application of Lie groups. New York: Academic Press.

    Google Scholar 

  • Sato, R. (1982). Invariant principle and capital-output conservation laws. Providence, RI: Brown University working paper No. 82–8.

    Google Scholar 

  • Sato, R., Nôno, T. and Mimura, F. (1983). Hidden symmetries: Lie groups and economic conservation laws, Essay in honor of Mart in Beckmann.

    Google Scholar 

  • Weitzman, M. L. (1976). On the welfare significance of national product in a dynamic economy. Quarterly Journal of Economics, 90, 156–162.

    Article  Google Scholar 

  • Whittaker, E. T. (1937). A treatise on the analytical dynamics of particles and rigid bodies. Cambridge: Cambridge University Press, 4th edition. Reprinted ( 1944 ), New York: Dover.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sato, R. (1990). The Invariance Principle and Income-Wealth Conservation Laws. In: Sato, R., Ramachandran, R.V. (eds) Conservation Laws and Symmetry: Applications to Economics and Finance. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1145-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1145-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5786-0

  • Online ISBN: 978-94-017-1145-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics